torchbox.module.loss package
Submodules
torchbox.module.loss.contrast module
- class torchbox.module.loss.contrast.ContrastLoss(mode='way1', cdim=None, dim=None, keepdim=False, reduction='mean')
Bases:
Module
Contrast
way1 is defined as follows, see [1]:
\[C = \frac{\sqrt{{\rm E}\left(|I|^2 - {\rm E}(|I|^2)\right)^2}}{{\rm E}(|I|^2)} \]way2 is defined as follows, see [2]:
\[C = \frac{{\rm E}(|I|^2)}{\left({\rm E}(|I|)\right)^2} \][1] Efficient Nonparametric ISAR Autofocus Algorithm Based on Contrast Maximization and Newton [2] section 13.4.1 in “Ian G. Cumming’s SAR book”
- Parameters:
cdim (int or None) – If
X
is complex-valued,cdim
is ignored. IfX
is real-valued andcdim
is integer thenX
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),X
will be treated as real-valueddim (int or None) – The dimension axis for computing contrast. The default is
None
, which means all.keepdim (bool) – keep dimensions? (include complex dim, defalut is
False
)mode (str, optional) –
'way1'
or'way2'
reduction (str or None, optional) – The operation mode of reduction,
None
,'mean'
or'sum'
(the default is ‘mean’)
- Returns:
C – The contrast value of input.
- Return type:
scalar or tensor
Examples
th.manual_seed(2020) X = th.randn(5, 2, 3, 4) # real C1 = ContrastLoss(mode='way1', cdim=None, dim=(-2, -1), reduction=None)(X) C2 = ContrastLoss(mode='way1', cdim=None, dim=(-2, -1), reduction='sum')(X) C3 = ContrastLoss(mode='way1', cdim=None, dim=(-2, -1), reduction='mean')(X) print(C1, C2, C3) # complex in real format C1 = ContrastLoss(mode='way1', cdim=1, dim=(-2, -1), reduction=None)(X) C2 = ContrastLoss(mode='way1', cdim=1, dim=(-2, -1), reduction='sum')(X) C3 = ContrastLoss(mode='way1', cdim=1, dim=(-2, -1), reduction='mean')(X) print(C1, C2, C3) # complex in complex format X = X[:, 0, ...] + 1j * X[:, 1, ...] C1 = ContrastLoss(mode='way1', cdim=None, dim=(-2, -1), reduction=None)(X) C2 = ContrastLoss(mode='way1', cdim=None, dim=(-2, -1), reduction='sum')(X) C3 = ContrastLoss(mode='way1', cdim=None, dim=(-2, -1), reduction='mean')(X) print(C1, C2, C3) # output tensor([[1.2612, 1.1085], [1.5992, 1.2124], [0.8201, 0.9887], [1.4376, 1.0091], [1.1397, 1.1860]]) tensor(11.7626) tensor(1.1763) tensor([0.6321, 1.1808, 0.5884, 1.1346, 0.6038]) tensor(4.1396) tensor(0.8279) tensor([0.6321, 1.1808, 0.5884, 1.1346, 0.6038]) tensor(4.1396) tensor(0.8279)
- forward(X)
forward process
- Parameters:
X (Tensor) – The the input for computing contrast.
- class torchbox.module.loss.contrast.NegativeContrastLoss(mode='way1', cdim=None, dim=None, keepdim=False, reduction='mean')
Bases:
Module
Negative Contrast Loss
way1 is defined as follows, see [1]:
\[C = -\frac{\sqrt{{\rm E}\left(|I|^2 - {\rm E}(|I|^2)\right)^2}}{{\rm E}(|I|^2)} \]way2 is defined as follows, see [2]:
\[C = -\frac{{\rm E}(|I|^2)}{\left({\rm E}(|I|)\right)^2} \][1] Efficient Nonparametric ISAR Autofocus Algorithm Based on Contrast Maximization and Newton [2] section 13.4.1 in “Ian G. Cumming’s SAR book”
- Parameters:
cdim (int or None) – If
X
is complex-valued,cdim
is ignored. IfX
is real-valued andcdim
is integer thenX
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),X
will be treated as real-valueddim (int or None) – The dimension axis for computing contrast. The default is
None
, which means all.keepdim (bool) – keep dimensions? (include complex dim, defalut is
False
)mode (str, optional) –
'way1'
or'way2'
reduction (str or None, optional) – The operation mode of reduction,
None
,'mean'
or'sum'
(the default is ‘mean’)
- Returns:
C – The contrast value of input.
- Return type:
scalar or tensor
Examples
th.manual_seed(2020) X = th.randn(5, 2, 3, 4) # real C1 = NegativeContrastLoss(mode='way1', cdim=None, dim=(-2, -1), reduction=None)(X) C2 = NegativeContrastLoss(mode='way1', cdim=None, dim=(-2, -1), reduction='sum')(X) C3 = NegativeContrastLoss(mode='way1', cdim=None, dim=(-2, -1), reduction='mean')(X) print(C1, C2, C3) # complex in real format C1 = NegativeContrastLoss(mode='way1', cdim=1, dim=(-2, -1), reduction=None)(X) C2 = NegativeContrastLoss(mode='way1', cdim=1, dim=(-2, -1), reduction='sum')(X) C3 = NegativeContrastLoss(mode='way1', cdim=1, dim=(-2, -1), reduction='mean')(X) print(C1, C2, C3) # complex in complex format X = X[:, 0, ...] + 1j * X[:, 1, ...] C1 = NegativeContrastLoss(mode='way1', cdim=None, dim=(-2, -1), reduction=None)(X) C2 = NegativeContrastLoss(mode='way1', cdim=None, dim=(-2, -1), reduction='sum')(X) C3 = NegativeContrastLoss(mode='way1', cdim=None, dim=(-2, -1), reduction='mean')(X) print(C1, C2, C3) # output tensor([[-1.2612, -1.1085], [-1.5992, -1.2124], [-0.8201, -0.9887], [-1.4376, -1.0091], [-1.1397, -1.1860]]) tensor(-11.7626) tensor(-1.1763) tensor([-0.6321, -1.1808, -0.5884, -1.1346, -0.6038]) tensor(-4.1396) tensor(-0.8279) tensor([-0.6321, -1.1808, -0.5884, -1.1346, -0.6038]) tensor(-4.1396) tensor(-0.8279)
- forward(X)
forward process
- Parameters:
X (Tensor) – The the input for computing contrast.
- class torchbox.module.loss.contrast.ReciprocalContrastLoss(mode='way1', cdim=None, dim=None, keepdim=False, reduction='mean')
Bases:
Module
way1 is defined as follows, for contrast, see [1]:
\[C = \frac{{\rm E}(|I|^2)}{\sqrt{{\rm E}\left(|I|^2 - {\rm E}(|I|^2)\right)^2}} \]way2 is defined as follows, for contrast, see [2]:
\[C = \frac{\left({\rm E}(|I|)\right)^2}{{\rm E}(|I|^2)} \][1] Efficient Nonparametric ISAR Autofocus Algorithm Based on Contrast Maximization and Newton [2] section 13.4.1 in “Ian G. Cumming’s SAR book”
- Parameters:
mode (str, optional) –
'way1'
or'way2'
cdim (int or None) – If
X
is complex-valued,cdim
is ignored. IfX
is real-valued andcdim
is integer thenX
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),X
will be treated as real-valueddim (int or None) – The dimension axis for computing contrast. The default is
None
, which means all.keepdim (bool) – keep dimensions? (include complex dim, defalut is
False
)reduction (str or None, optional) – The operation mode of reduction,
None
,'mean'
or'sum'
(the default is ‘mean’)
- Returns:
C – The contrast value of input.
- Return type:
scalar or tensor
Examples
th.manual_seed(2020) X = th.randn(5, 2, 3, 4) # real C1 = ReciprocalContrastLoss(mode='way1', cdim=None, dim=(-2, -1), reduction=None)(X) C2 = ReciprocalContrastLoss(mode='way1', cdim=None, dim=(-2, -1), reduction='sum')(X) C3 = ReciprocalContrastLoss(mode='way1', cdim=None, dim=(-2, -1), reduction='mean')(X) print(C1, C2, C3) # complex in real format C1 = ReciprocalContrastLoss(mode='way1', cdim=1, dim=(-2, -1), reduction=None)(X) C2 = ReciprocalContrastLoss(mode='way1', cdim=1, dim=(-2, -1), reduction='sum')(X) C3 = ReciprocalContrastLoss(mode='way1', cdim=1, dim=(-2, -1), reduction='mean')(X) print(C1, C2, C3) # complex in complex format X = X[:, 0, ...] + 1j * X[:, 1, ...] C1 = ReciprocalContrastLoss(mode='way1', cdim=None, dim=(-2, -1), reduction=None)(X) C2 = ReciprocalContrastLoss(mode='way1', cdim=None, dim=(-2, -1), reduction='sum')(X) C3 = ReciprocalContrastLoss(mode='way1', cdim=None, dim=(-2, -1), reduction='mean')(X) print(C1, C2, C3) tensor([[0.7929, 0.9021], [0.6253, 0.8248], [1.2193, 1.0114], [0.6956, 0.9909], [0.8774, 0.8432]]) tensor(8.7830) tensor(0.8783) tensor([1.5821, 0.8469, 1.6997, 0.8813, 1.6563]) tensor(6.6663) tensor(1.3333) tensor([1.5821, 0.8469, 1.6997, 0.8813, 1.6563]) tensor(6.6663) tensor(1.3333)
- forward(X)
forward process
- Parameters:
X (Tensor) – The the input for computing contrast.
torchbox.module.loss.correlation module
- class torchbox.module.loss.correlation.CosSimLoss(mode='abs', cdim=None, dim=None, keepdim=False, reduction='mean')
Bases:
Module
compute the cosine similarity loss of the inputs
If utilize the amplitude of correlation as loss
\[{\mathcal L} = 1 - |\frac{<{\bf p}, {\bf g}>}{\|{\bf p}\|_2\|{\bf g}\|_2}| \]If utilize the angle of correlation as loss
\[{\mathcal L} = |\angle \frac{<{\bf p}, {\bf g}>}{\|{\bf p}\|_2\|{\bf g}\|_2}| \]- Parameters:
mode (str) – only work when
P
andG
are complex-valued in real format or complex format.'abs'
or'amplitude'
returns the amplitude of similarity,'angle'
or'phase'
returns the phase of similarity.cdim (int or None) – If
P
andG
is complex-valued,cdim
is ignored. IfP
andG
is real-valued andcdim
is integer thenP
andG
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),P
andG
will be treated as real-valueddim (int or None) – The dimension axis for computing correlation. The default is
None
, which means all.keepdim (bool) – keep dimensions? (include complex dim, defalut is
False
)reduction (str or None, optional) – The operation mode of reduction,
None
,'mean'
or'sum'
(the default is ‘mean’)
- Returns:
S (Tensor) – The correlation of the inputs.
see also
cossim()
,peacor()
,eigveccor()
,CosSim
,PeaCor
,EigVecCor
,PeaCorLoss
,EigVecCorLoss
.
Examples
import torch as th from torchbox import CosSimLoss th.manual_seed(2020) P = th.randn(5, 2, 3, 4) G = th.randn(5, 2, 3, 4) # real S1 = CosSimLoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) S2 = CosSimLoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) S3 = CosSimLoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(S1, S2, S3) # complex in real format S1 = CosSimLoss(cdim=1, dim=(-2, -1), reduction=None)(P, G) S2 = CosSimLoss(cdim=1, dim=(-2, -1), reduction='sum')(P, G) S3 = CosSimLoss(cdim=1, dim=(-2, -1), reduction='mean')(P, G) print(S1, S2, S3) # complex in complex format P = P[:, 0, ...] + 1j * P[:, 1, ...] G = G[:, 0, ...] + 1j * G[:, 1, ...] S1 = CosSimLoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) S2 = CosSimLoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) S3 = CosSimLoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(S1, S2, S3) # output tensor([[0.4791, 0.0849], [0.0334, 0.4855], [0.0136, 0.2280], [0.4951, 0.2166], [0.4484, 0.4221]]) tensor(2.9068) tensor(0.2907) tensor([[0.2926], [0.2912], [0.1505], [0.3993], [0.3350]]) tensor([1.4685]) tensor([0.2937]) tensor([0.2926, 0.2912, 0.1505, 0.3993, 0.3350]) tensor(1.4685) tensor(0.2937)
- forward(P, G)
forward process
- Parameters:
P (Tensor) – predicted/estimated/reconstructed
G (Tensor) – ground-truth/target
- Returns:
S – The correlation of the inputs.
- Return type:
Tensor
- class torchbox.module.loss.correlation.EigVecCorLoss(npcs=4, mode=None, cdim=None, fdim=-2, sdim=-1, keepdim=False, reduction='mean')
Bases:
Module
compute the eigenvector correlation of the inputs
- Parameters:
mode (str) – only work when
P
andG
are complex-valued in real format or complex format.'abs'
or'amplitude'
returns the amplitude of similarity,'angle'
or'phase'
returns the phase of similarity.cdim (int or None) – If
P
andG
is complex-valued,cdim
is ignored. IfP
andG
is real-valued andcdim
is integer thenP
andG
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),P
andG
will be treated as real-valuedfdim (int, optional) – the dimension index of feature, by default -2
sdim (int, optional) – the dimension index of sample, by default -1
keepdim (bool) – keep dimensions? (include complex dim, defalut is
False
)reduction (str or None, optional) – The operation mode of reduction,
None
,'mean'
or'sum'
(the default is ‘mean’)
- Returns:
S (Tensor) – The eigenvector correlation of the inputs.
see also
cossim()
,peacor()
,eigveccor()
,CosSim
,PeaCor
,EigVecCor
,CosSimLoss
,EigVecCorLoss
.
Examples
import torch as th from torchbox import EigVecCorLoss mode = 'abs' th.manual_seed(2020) P = th.randn(5, 2, 3, 4) G = th.randn(5, 2, 3, 4) # real S1 = EigVecCorLoss(npcs=4, mode=mode, cdim=None, fdim=(-2, -1), sdim=0, reduction=None)(P, G) S2 = EigVecCorLoss(npcs=4, mode=mode, cdim=None, fdim=(-2, -1), sdim=0, reduction='sum')(P, G) S3 = EigVecCorLoss(npcs=4, mode=mode, cdim=None, fdim=(-2, -1), sdim=0, reduction='mean')(P, G) print(S1, S2, S3) # complex in real format S1 = EigVecCorLoss(npcs=4, mode=mode, cdim=1, fdim=(-2, -1), sdim=0, reduction=None)(P, G) S2 = EigVecCorLoss(npcs=4, mode=mode, cdim=1, fdim=(-2, -1), sdim=0, reduction='sum')(P, G) S3 = EigVecCorLoss(npcs=4, mode=mode, cdim=1, fdim=(-2, -1), sdim=0, reduction='mean')(P, G) print(S1, S2, S3) # complex in complex format P = P[:, 0, ...] + 1j * P[:, 1, ...] G = G[:, 0, ...] + 1j * G[:, 1, ...] S1 = EigVecCorLoss(npcs=4, mode=mode, cdim=None, fdim=(-2, -1), sdim=0, reduction=None)(P, G) S2 = EigVecCorLoss(npcs=4, mode=mode, cdim=None, fdim=(-2, -1), sdim=0, reduction='sum')(P, G) S3 = EigVecCorLoss(npcs=4, mode=mode, cdim=None, fdim=(-2, -1), sdim=0, reduction='mean')(P, G) print(S1, S2, S3)
- forward(P, G)
forward process
- Parameters:
P (Tensor) – predicted/estimated/reconstructed
G (Tensor) – ground-truth/target
- class torchbox.module.loss.correlation.PeaCorLoss(mode='abs', cdim=None, dim=None, keepdim=False, reduction='mean')
Bases:
Module
compute the pearson correlation loss of the inputs
If utilize the amplitude of pearson correlation as loss
\[{\mathcal L} = 1 - |\frac{<{\bf p}, {\bf g}>}{\|{\bf p}\|_2\|{\bf g}\|_2}| \]If utilize the angle of pearson correlation as loss
\[{\mathcal L} = |\angle \frac{<{\bf p}, {\bf g}>}{\|{\bf p}\|_2\|{\bf g}\|_2}| \]where \(\bf p\) and \(\bf g\) is the centered version (removed mean) of inputs
- Parameters:
mode (str) – only work when
P
andG
are complex-valued in real format or complex format.'abs'
or'amplitude'
returns the amplitude of similarity,'angle'
or'phase'
returns the phase of similarity.cdim (int or None) – If
P
andG
is complex-valued,cdim
is ignored. IfP
andG
is real-valued andcdim
is integer thenP
andG
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),P
andG
will be treated as real-valueddim (int or None) – The dimension axis for computing correlation. The default is
None
, which means all.keepdim (bool) – keep dimensions? (include complex dim, defalut is
False
)reduction (str or None, optional) – The operation mode of reduction,
None
,'mean'
or'sum'
(the default is ‘mean’)
- Returns:
S (Tensor) – The correlation of the inputs.
see also
cossim()
,peacor()
,eigveccor()
,CosSim
,PeaCor
,EigVecCor
,CosSimLoss
,EigVecCorLoss
.
Examples
import torch as th from torchbox import PeaCorLoss th.manual_seed(2020) P = th.randn(5, 2, 3, 4) G = th.randn(5, 2, 3, 4) # real S1 = PeaCorLoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) S2 = PeaCorLoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) S3 = PeaCorLoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(S1, S2, S3) # complex in real format S1 = PeaCorLoss(cdim=1, dim=(-2, -1), reduction=None)(P, G) S2 = PeaCorLoss(cdim=1, dim=(-2, -1), reduction='sum')(P, G) S3 = PeaCorLoss(cdim=1, dim=(-2, -1), reduction='mean')(P, G) print(S1, S2, S3) # complex in complex format P = P[:, 0, ...] + 1j * P[:, 1, ...] G = G[:, 0, ...] + 1j * G[:, 1, ...] S1 = PeaCorLoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) S2 = PeaCorLoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) S3 = PeaCorLoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(S1, S2, S3) # output tensor([[0.6010, 0.0260], [0.0293, 0.4981], [0.0063, 0.2284], [0.3203, 0.2851], [0.3757, 0.3936]]) tensor(2.7639) tensor(0.2764) tensor([[0.3723], [0.2992], [0.1267], [0.3020], [0.2910]]) tensor([1.3911]) tensor([0.2782]) tensor([0.3723, 0.2992, 0.1267, 0.3020, 0.2910]) tensor(1.3911) tensor(0.2782)
- forward(P, G)
forward process
- Parameters:
P (Tensor) – predicted/estimated/reconstructed
G (Tensor) – ground-truth/target
torchbox.module.loss.entropy module
- class torchbox.module.loss.entropy.EntropyLoss(mode='shannon', cdim=None, dim=None, keepdim=False, reduction='mean')
Bases:
Module
compute the entropy of the inputs
\[{\rm S} = -\sum_{n=0}^N p_i{\rm log}_2 p_n \]where \(N\) is the number of pixels, \(p_n=\frac{|X_n|^2}{\sum_{n=0}^N|X_n|^2}\).
- Parameters:
X (Tensor) – The complex or real inputs, for complex inputs, both complex and real representations are surpported.
mode (str, optional) – The entropy mode:
'shannon'
or'natural'
(the default is ‘shannon’)cdim (int or None) – If
X
is complex-valued,cdim
is ignored. IfX
is real-valued andcdim
is integer thenX
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),X
will be treated as real-valueddim (int or None) – The dimension axis for computing entropy. The default is
None
, which means all.keepdim (bool) – keep dimensions? (include complex dim, defalut is
False
)reduction (str or None, optional) – The operation mode of reduction,
None
,'mean'
or'sum'
(the default is ‘mean’)
- Returns:
S – The entropy of the inputs.
- Return type:
Tensor
Examples
th.manual_seed(2020) X = th.randn(5, 2, 3, 4) # real S1 = EntropyLoss(mode='shannon', cdim=None, dim=(-2, -1), reduction=None)(X) S2 = EntropyLoss(mode='shannon', cdim=None, dim=(-2, -1), reduction='sum')(X) S3 = EntropyLoss(mode='shannon', cdim=None, dim=(-2, -1), reduction='mean')(X) print(S1, S2, S3) # complex in real format S1 = EntropyLoss(mode='shannon', cdim=1, dim=(-2, -1), reduction=None)(X) S2 = EntropyLoss(mode='shannon', cdim=1, dim=(-2, -1), reduction='sum')(X) S3 = EntropyLoss(mode='shannon', cdim=1, dim=(-2, -1), reduction='mean')(X) print(S1, S2, S3) # complex in complex format X = X[:, 0, ...] + 1j * X[:, 1, ...] S1 = EntropyLoss(mode='shannon', cdim=None, dim=(-2, -1), reduction=None)(X) S2 = EntropyLoss(mode='shannon', cdim=None, dim=(-2, -1), reduction='sum')(X) S3 = EntropyLoss(mode='shannon', cdim=None, dim=(-2, -1), reduction='mean')(X) print(S1, S2, S3) # output tensor([[2.5482, 2.7150], [2.0556, 2.6142], [2.9837, 2.9511], [2.4296, 2.7979], [2.7287, 2.5560]]) tensor(26.3800) tensor(2.6380) tensor([3.2738, 2.5613, 3.2911, 2.7989, 3.2789]) tensor(15.2040) tensor(3.0408) tensor([3.2738, 2.5613, 3.2911, 2.7989, 3.2789]) tensor(15.2040) tensor(3.0408)
- forward(X)
forward process
- Parameters:
X (Tensor) – the input of entropy
torchbox.module.loss.error module
- class torchbox.module.loss.error.MAELoss(cdim=None, dim=None, keepdim=False, reduction='mean')
Bases:
Module
computes the mean absoluted error
Both complex and real representation are supported.
\[{\rm MAE}({\bf P, G}) = \frac{1}{N}|{\bf P} - {\bf G}| = \frac{1}{N}\sum_{i=1}^N |p_i - g_i| \]- Parameters:
P (array) – original
P – reconstructed
cdim (int or None) – If
P
is complex-valued,cdim
is ignored. IfP
is real-valued andcdim
is integer thenP
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),P
will be treated as real-valueddim (int or None) – The dimension axis for computing error. The default is
None
, which means all.keepdim (bool) – keep dimensions? (include complex dim, defalut is
False
)reduction (str or None, optional) – The operation mode of reduction,
None
,'mean'
or'sum'
(the default is'mean'
)
- Returns:
mean absoluted error
- Return type:
scalar or array
Examples
th.manual_seed(2020) P = th.randn(5, 2, 3, 4) G = th.randn(5, 2, 3, 4) # real C1 = MAELoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) C2 = MAELoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) C3 = MAELoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3) # complex in real format C1 = MAELoss(cdim=1, dim=(-2, -1), reduction=None)(P, G) C2 = MAELoss(cdim=1, dim=(-2, -1), reduction='sum')(P, G) C3 = MAELoss(cdim=1, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3) # complex in complex format P = P[:, 0, ...] + 1j * P[:, 1, ...] G = G[:, 0, ...] + 1j * G[:, 1, ...] C1 = MAELoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) C2 = MAELoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) C3 = MAELoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3) # ---output [[1.06029116 1.19884877] [0.90117091 1.13552361] [1.23422083 0.75743914] [1.16127965 1.42169262] [1.25090731 1.29134222]] 11.41271620974502 1.141271620974502 [1.71298566 1.50327364 1.53328572 2.11430946 2.01435599] 8.878210471231741 1.7756420942463482 [1.71298566 1.50327364 1.53328572 2.11430946 2.01435599] 8.878210471231741 1.7756420942463482
- forward(P, G)
forward process
- Parameters:
P (Tensor) – predicted/estimated/reconstructed
G (Tensor) – ground-truth/target
- class torchbox.module.loss.error.MSELoss(cdim=None, dim=None, keepdim=False, reduction='mean')
Bases:
Module
computes the mean square error
Both complex and real representation are supported.
\[{\rm MSE}({\bf P, G}) = \frac{1}{N}\|{\bf P} - {\bf G}\|_2^2 = \frac{1}{N}\sum_{i=1}^N(|p_i - g_i|)^2 \]- Parameters:
cdim (int or None) – If
P
is complex-valued,cdim
is ignored. IfP
is real-valued andcdim
is integer thenP
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),P
will be treated as real-valueddim (int or None) – The dimension axis for computing error. The default is
None
, which means all.keepdim (bool) – keep dimensions? (include complex dim, defalut is
False
)reduction (str or None, optional) – The operation mode of reduction,
None
,'mean'
or'sum'
(the default is'mean'
)
- Returns:
mean square error
- Return type:
scalar or array
Examples
th.manual_seed(2020) P = th.randn(5, 2, 3, 4) G = th.randn(5, 2, 3, 4) # real C1 = MSELoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) C2 = MSELoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) C3 = MSELoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3) # complex in real format C1 = MSELoss(cdim=1, dim=(-2, -1), reduction=None)(P, G) C2 = MSELoss(cdim=1, dim=(-2, -1), reduction='sum')(P, G) C3 = MSELoss(cdim=1, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3) # complex in complex format P = P[:, 0, ...] + 1j * P[:, 1, ...] G = G[:, 0, ...] + 1j * G[:, 1, ...] C1 = MSELoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) C2 = MSELoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) C3 = MSELoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3) # ---output [[1.57602573 2.32844311] [1.07232374 2.36118382] [2.1841515 0.79002805] [2.43036295 3.18413899] [2.31107373 2.73990485]] 20.977636476183186 2.0977636476183186 [3.90446884 3.43350757 2.97417955 5.61450194 5.05097858] 20.977636476183186 4.195527295236637 [3.90446884 3.43350757 2.97417955 5.61450194 5.05097858] 20.977636476183186 4.195527295236637
- forward(P, G)
forward process
- Parameters:
P (Tensor) – predicted/estimated/reconstructed
G (Tensor) – ground-truth/target
- class torchbox.module.loss.error.NMAELoss(mode='Gabssum', cdim=None, dim=None, keepdim=False, reduction='mean')
Bases:
Module
computes the normalized mean absoluted error
Both complex and real representation are supported.
- Parameters:
mode (str) – mode of normalization,
'Gabssum'
(default) normalized square error with the amplitude summation ofG
,'Gpowsum'
normalized square error with the power summation ofG
,'Gabsmax'
normalized square error with the maximum amplitude ofG
,'Gpowmax'
normalized square error with the maximum power ofG
,'GpeakV'
normalized square error with the square of peak value (V) ofG
;'Gfnorm'
normalized square error with Frobenius norm ofG
;'Gpnorm'
normalized square error with p-norm ofG
;'fnorm'
normalizedP
andG
with Frobenius norm,'pnormV'
normalizedP
andG
with p-norm, respectively, where V is a float or integer number;'zscore'
normalizedP
andG
with zscore method.'std'
normalizedP
andG
with standard deviation.cdim (int or None) – If
G
is complex-valued,cdim
is ignored. IfG
is real-valued andcdim
is integer thenG
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),G
will be treated as real-valueddim (int or None) – The dimension axis for computing error. The default is
None
, which means all.keepdim (bool) – keep dimensions? (include complex dim, defalut is
False
)reduction (str or None, optional) – The operation mode of reduction,
None
,'mean'
or'sum'
(the default is'mean'
)
- Returns:
normalized mean absoluted error
- Return type:
scalar or array
Examples
th.manual_seed(2020) P = th.randn(5, 2, 3, 4) G = th.randn(5, 2, 3, 4) # real C1 = NMAELoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) C2 = NMAELoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) C3 = NMAELoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3) # complex in real format C1 = NMAELoss(cdim=1, dim=(-2, -1), reduction=None)(P, G) C2 = NMAELoss(cdim=1, dim=(-2, -1), reduction='sum')(P, G) C3 = NMAELoss(cdim=1, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3) # complex in complex format P = P[:, 0, ...] + 1j * P[:, 1, ...] G = G[:, 0, ...] + 1j * G[:, 1, ...] C1 = NMAELoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) C2 = NMAELoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) C3 = NMAELoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3)
- forward(P, G)
forward process
- Parameters:
P (Tensor) – predicted/estimated/reconstructed
G (Tensor) – ground-truth/target
- class torchbox.module.loss.error.NMSELoss(mode='Gpowsum', cdim=None, dim=None, keepdim=False, reduction='mean')
Bases:
Module
computes the normalized mean square error
Both complex and real representation are supported.
- Parameters:
mode (str) – mode of normalization
'Gpowsum'
(default) normalized square error with the power summation ofG
,'Gabssum'
(default) normalized square error with the amplitude summation ofG
,'Gpowmax'
normalized square error with the maximum power ofG
,'Gabsmax'
normalized square error with the maximum amplitude ofG
,'GpeakV'
normalized square error with the square of peak value (V) ofG
;'Gfnorm'
normalized square error with Frobenius norm ofG
;'Gpnorm'
normalized square error with p-norm ofG
;'fnorm'
normalizedP
andG
with Frobenius norm,'pnormV'
normalizedP
andG
with p-norm, respectively, where V is a float or integer number;'zscore'
normalizedP
andG
with zscore method.'std'
normalizedP
andG
with standard deviation.cdim (int or None) – If
G
is complex-valued,cdim
is ignored. IfG
is real-valued andcdim
is integer thenG
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),G
will be treated as real-valueddim (int or None) – The dimension axis for computing error. The default is
None
, which means all.keepdim (bool) – keep dimensions? (include complex dim, defalut is
False
)reduction (str or None, optional) – The operation mode of reduction,
None
,'mean'
or'sum'
(the default is'mean'
)
- Returns:
normalized mean square error
- Return type:
scalar or array
Examples
th.manual_seed(2020) P = th.randn(5, 2, 3, 4) G = th.randn(5, 2, 3, 4) # real C1 = NMSELoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) C2 = NMSELoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) C3 = NMSELoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3) # complex in real format C1 = NMSELoss(cdim=1, dim=(-2, -1), reduction=None)(P, G) C2 = NMSELoss(cdim=1, dim=(-2, -1), reduction='sum')(P, G) C3 = NMSELoss(cdim=1, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3) # complex in complex format P = P[:, 0, ...] + 1j * P[:, 1, ...] G = G[:, 0, ...] + 1j * G[:, 1, ...] C1 = NMSELoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) C2 = NMSELoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) C3 = NMSELoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3)
- forward(P, G)
forward process
- Parameters:
P (Tensor) – predicted/estimated/reconstructed
G (Tensor) – ground-truth/target
- class torchbox.module.loss.error.NSAELoss(mode='Gabssum', cdim=None, dim=None, keepdim=False, reduction='mean')
Bases:
Module
computes the normalized sum absoluted error
Both complex and real representation are supported.
- Parameters:
mode (str) – mode of normalization,
'Gabssum'
(default) normalized square error with the amplitude summation ofG
,'Gpowsum'
normalized square error with the power summation ofG
,'Gabsmax'
normalized square error with the maximum amplitude ofG
,'Gpowmax'
normalized square error with the maximum power ofG
,'GpeakV'
normalized square error with the square of peak value (V) ofG
;'Gfnorm'
normalized square error with Frobenius norm ofG
;'Gpnorm'
normalized square error with p-norm ofG
;'fnorm'
normalizedP
andG
with Frobenius norm,'pnormV'
normalizedP
andG
with p-norm, respectively, where V is a float or integer number;'zscore'
normalizedP
andG
with zscore method.'std'
normalizedP
andG
with standard deviation.cdim (int or None) – If
G
is complex-valued,cdim
is ignored. IfG
is real-valued andcdim
is integer thenG
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),G
will be treated as real-valueddim (int or None) – The dimension axis for computing error. The default is
None
, which means all.keepdim (bool) – keep dimensions? (include complex dim, defalut is
False
)reduction (str or None, optional) – The operation mode of reduction,
None
,'mean'
or'sum'
(the default is'mean'
)
- Returns:
sum absoluted error
- Return type:
scalar or array
Examples
th.manual_seed(2020) P = th.randn(5, 2, 3, 4) G = th.randn(5, 2, 3, 4) # real C1 = NSAELoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) C2 = NSAELoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) C3 = NSAELoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3) # complex in real format C1 = NSAELoss(cdim=1, dim=(-2, -1), reduction=None)(P, G) C2 = NSAELoss(cdim=1, dim=(-2, -1), reduction='sum')(P, G) C3 = NSAELoss(cdim=1, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3) # complex in complex format P = P[:, 0, ...] + 1j * P[:, 1, ...] G = G[:, 0, ...] + 1j * G[:, 1, ...] C1 = NSAELoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) C2 = NSAELoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) C3 = NSAELoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3)
- forward(P, G)
forward process
- Parameters:
P (Tensor) – predicted/estimated/reconstructed
G (Tensor) – ground-truth/target
- class torchbox.module.loss.error.NSSELoss(mode='Gpowsum', cdim=None, dim=None, keepdim=False, reduction='mean')
Bases:
Module
computes the normalized sum square error
Both complex and real representation are supported.
- Parameters:
mode (str) – mode of normalization,
'Gpowsum'
(default) normalized square error with the power summation ofG
,'Gabssum'
(default) normalized square error with the amplitude summation ofG
,'Gpowmax'
normalized square error with the maximum power ofG
,'Gabsmax'
normalized square error with the maximum amplitude ofG
,'GpeakV'
normalized square error with the square of peak value (V) ofG
;'Gfnorm'
normalized square error with Frobenius norm ofG
;'Gpnorm'
normalized square error with p-norm ofG
;'fnorm'
normalizedP
andG
with Frobenius norm,'pnormV'
normalizedP
andG
with p-norm, respectively, where V is a float or integer number;'zscore'
normalizedP
andG
with zscore method.'std'
normalizedP
andG
with standard deviation.cdim (int or None) – If
G
is complex-valued,cdim
is ignored. IfG
is real-valued andcdim
is integer thenG
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),G
will be treated as real-valueddim (int or None) – The dimension axis for computing error. The default is
None
, which means all.keepdim (bool) – keep dimensions? (include complex dim, defalut is
False
)reduction (str or None, optional) – The operation mode of reduction,
None
,'mean'
or'sum'
(the default is'mean'
)
- Returns:
sum square error
- Return type:
scalar or array
Examples
th.manual_seed(2020) P = th.randn(5, 2, 3, 4) G = th.randn(5, 2, 3, 4) # real C1 = NSSELoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) C2 = NSSELoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) C3 = NSSELoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3) # complex in real format C1 = NSSELoss(cdim=1, dim=(-2, -1), reduction=None)(P, G) C2 = NSSELoss(cdim=1, dim=(-2, -1), reduction='sum')(P, G) C3 = NSSELoss(cdim=1, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3) # complex in complex format P = P[:, 0, ...] + 1j * P[:, 1, ...] G = G[:, 0, ...] + 1j * G[:, 1, ...] C1 = NSSELoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) C2 = NSSELoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) C3 = NSSELoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3)
- forward(P, G)
forward process
- Parameters:
P (Tensor) – predicted/estimated/reconstructed
G (Tensor) – ground-truth/target
- class torchbox.module.loss.error.SAELoss(cdim=None, dim=None, keepdim=False, reduction='mean')
Bases:
Module
computes the sum absoluted error
Both complex and real representation are supported.
\[{\rm SAE}({\bf P, G}) = |{\bf P} - {\bf G}| = \sum_{i=1}^N |p_i - g_i| \]- Parameters:
P (array) – original
P – reconstructed
cdim (int or None) – If
P
is complex-valued,cdim
is ignored. IfP
is real-valued andcdim
is integer thenP
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),P
will be treated as real-valueddim (int or None) – The dimension axis for computing error. The default is
None
, which means all.keepdim (bool) – keep dimensions? (include complex dim, defalut is
False
)reduction (str or None, optional) – The operation mode of reduction,
None
,'mean'
or'sum'
(the default is'mean'
)
- Returns:
sum absoluted error
- Return type:
scalar or array
Examples
th.manual_seed(2020) P = th.randn(5, 2, 3, 4) G = th.randn(5, 2, 3, 4) # real C1 = SAELoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) C2 = SAELoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) C3 = SAELoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3) # complex in real format C1 = SAELoss(cdim=1, dim=(-2, -1), reduction=None)(P, G) C2 = SAELoss(cdim=1, dim=(-2, -1), reduction='sum')(P, G) C3 = SAELoss(cdim=1, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3) # complex in complex format P = P[:, 0, ...] + 1j * P[:, 1, ...] G = G[:, 0, ...] + 1j * G[:, 1, ...] C1 = SAELoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) C2 = SAELoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) C3 = SAELoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3) # ---output [[12.72349388 14.3861852 ] [10.81405096 13.62628335] [14.81065 9.08926963] [13.93535577 17.0603114 ] [15.0108877 15.49610662]] 136.95259451694022 13.695259451694023 [20.55582795 18.03928365 18.39942858 25.37171356 24.17227192] 106.53852565478087 21.307705130956172 [20.55582795 18.03928365 18.39942858 25.37171356 24.17227192] 106.5385256547809 21.30770513095618
- forward(P, G)
forward process
- Parameters:
P (Tensor) – predicted/estimated/reconstructed
G (Tensor) – ground-truth/target
- class torchbox.module.loss.error.SSELoss(cdim=None, dim=None, keepdim=False, reduction='mean')
Bases:
Module
computes the sum square error
Both complex and real representation are supported.
\[{\rm SSE}({\bf P, G}) = \|{\bf P} - {\bf G}\|_2^2 = \sum_{i=1}^N(|p_i - g_i|)^2 \]- Parameters:
cdim (int or None) – If
P
is complex-valued,cdim
is ignored. IfP
is real-valued andcdim
is integer thenP
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),P
will be treated as real-valueddim (int or None) – The dimension axis for computing error. The default is
None
, which means all.keepdim (bool) – keep dimensions? (include complex dim, defalut is
False
)reduction (str or None, optional) – The operation mode of reduction,
None
,'mean'
or'sum'
(the default is'mean'
)
- Returns:
sum square error
- Return type:
scalar or array
Examples
th.manual_seed(2020) P = th.randn(5, 2, 3, 4) G = th.randn(5, 2, 3, 4) # real C1 = SSELoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) C2 = SSELoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) C3 = SSELoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3) # complex in real format C1 = SSELoss(cdim=1, dim=(-2, -1), reduction=None)(P, G) C2 = SSELoss(cdim=1, dim=(-2, -1), reduction='sum')(P, G) C3 = SSELoss(cdim=1, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3) # complex in complex format P = P[:, 0, ...] + 1j * P[:, 1, ...] G = G[:, 0, ...] + 1j * G[:, 1, ...] C1 = SSELoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) C2 = SSELoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) C3 = SSELoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(C1, C2, C3) # ---output [[18.91230872 27.94131733] [12.86788492 28.33420589] [26.209818 9.48033663] [29.16435541 38.20966786] [27.73288477 32.87885818]] 251.73163771419823 25.173163771419823 [46.85362605 41.20209081 35.69015462 67.37402327 60.61174295] 251.73163771419823 50.346327542839646 [46.85362605 41.20209081 35.69015462 67.37402327 60.61174295] 251.73163771419823 50.346327542839646
- forward(P, G)
forward process
- Parameters:
P (Tensor) – predicted/estimated/reconstructed
G (Tensor) – ground-truth/target
torchbox.module.loss.fourier module
- class torchbox.module.loss.fourier.FourierAmplitudeLoss(err='th.nn.MSELoss()', cdim=None, ftdim=(-2, -1), iftdim=None, ftn=None, iftn=None, ftnorm=None, iftnorm=None)
Bases:
Module
Fourier Domain Amplitude Loss
compute amplitude loss in fourier domain.
- Parameters:
err (str, object, optional) – string type will be converted to function by
eval()
, such as'th.nn.MSELoss()'
(default),'tb.SSELoss(cdim=None, dim=(-2, -1), reduction=None)'
,'tb.CosSimLoss(cdim=None, dim=(-2, -1), reduction=None)'
, …cdim (int, optional) – If data is complex-valued but represented as real tensors, you should specify the dimension. Otherwise, set it to None, defaults is None. For example, \({\bm X}_c\in {\mathbb C}^{N\times C\times H\times W}\) is represented as a real-valued tensor \({\bm X}_r\in {\mathbb R}^{N\times C\times H\times W\ times 2}\), then
cdim
equals to -1 or 4.ftdim (tuple, None, optional) – the dimensions for Fourier transformation. by default (-2, -1).
iftdim (tuple, None, optional) – the dimension for inverse Fourier transformation, by default None.
ftn (int, None, optional) – the number of points for Fourier transformation, by default None
iftn (int, None, optional) – the number of points for inverse Fourier transformation, by default None
ftnorm (str, None, optional) –
the normalization method for Fourier transformation, by default None
”forward” - normalize by 1/n
”backward” - no normalization
”ortho” - normalize by 1/sqrt(n) (making the FFT orthonormal)
iftnorm (str, None, optional) –
the normalization method for inverse Fourier transformation, by default None
”forward” - no normalization
”backward” - normalize by 1/n
”ortho” - normalize by 1/sqrt(n) (making the IFFT orthonormal)
:param please see also
th.nn.fft.fft()
andth.nn.fft.ifft()
.:Examples
Compute loss of data in real and complex representation, respectively.
th.manual_seed(2020) xr = th.randn(10, 2, 4, 4) * 100 yr = th.randn(10, 2, 4, 4) * 100 xc = xr[:, [0], ...] + 1j * xr[:, [1], ...] yc = yr[:, [0], ...] + 1j * yr[:, [1], ...] errr = "tb.SSELoss(cdim=1, dim=(-2, -1), reduction='mean')" err = "tb.SSELoss(cdim=None, dim=(-2, -1), reduction='mean')" # err = 'th.nn.MSELoss()' flossr = FourierAmplitudeLoss(err=err, cdim=1, ftdim=(-2, -1), iftdim=None, ftn=None, iftn=None, ftnorm=None, iftnorm=None) flossc = FourierAmplitudeLoss(err=err, cdim=None, ftdim=(-2, -1), iftdim=None, ftn=None, iftn=None, ftnorm=None, iftnorm=None) print(flossr(xr, yr)) print(flossc(xc, yc)) flossr = FourierAmplitudeLoss(err=err, cdim=1, ftdim=(-2, -1), iftdim=None, ftn=None, iftn=None, ftnorm='forward', iftnorm=None) flossc = FourierAmplitudeLoss(err=err, cdim=None, ftdim=(-2, -1), iftdim=None, ftn=None, iftn=None, ftnorm='forward', iftnorm=None) print(flossr(xr, yr)) print(flossc(xc, yc)) # ---output tensor(456761.5625) tensor(456761.5625) tensor(28547.5977) tensor(28547.5977)
- forward(P, G)
forward process
- Parameters:
P (Tensor) – predicted/estimated/reconstructed
G (Tensor) – ground-truth/target
- class torchbox.module.loss.fourier.FourierLoss(err='th.nn.MSELoss()', cdim=None, ftdim=(-2, -1), iftdim=None, ftn=None, iftn=None, ftnorm=None, iftnorm=None)
Bases:
Module
Fourier Domain Loss
Compute loss in Fourier domain. Given input \({\bm P}\), target \(\bm G\),
\[L = \varepsilon({\mathcal F}({\bm P}), {\mathcal F}({\bm G})) \]where, \({\bm P}\), \(\bm G\) can be real-valued and complex-valued data, \(\varepsilon(\cdot)\) is a function, such as mean square error, absolute error, …
- Parameters:
err (str, object, optional) – string type will be converted to function by
eval()
, such as'th.nn.MSELoss()'
(default),'tb.SSELoss(cdim=None, dim=(-2, -1), reduction=None)'
,'tb.CosSimLoss(cdim=None, dim=(-2, -1), reduction=None)'
, …cdim (int, optional) – If data is complex-valued but represented as real tensors, you should specify the dimension. Otherwise, set it to None, defaults is None. For example, \({\bm X}_c\in {\mathbb C}^{N\times C\times H\times W}\) is represented as a real-valued tensor \({\bm X}_r\in {\mathbb R}^{N\times C\times H\times W\ times 2}\), then
cdim
equals to -1 or 4.ftdim (tuple, None, optional) – the dimensions for Fourier transformation. by default (-2, -1).
iftdim (tuple, None, optional) – the dimension for inverse Fourier transformation, by default None.
ftn (int, None, optional) – the number of points for Fourier transformation, by default None
iftn (int, None, optional) – the number of points for inverse Fourier transformation, by default None
ftnorm (str, None, optional) –
the normalization method for Fourier transformation, by default None
”forward” - normalize by 1/n
”backward” - no normalization
”ortho” - normalize by 1/sqrt(n) (making the FFT orthonormal)
iftnorm (str, None, optional) –
the normalization method for inverse Fourier transformation, by default None
”forward” - no normalization
”backward” - normalize by 1/n
”ortho” - normalize by 1/sqrt(n) (making the IFFT orthonormal)
please see also
th.nn.fft.fft()
andth.nn.fft.ifft()
.Examples
Compute loss of data in real and complex representation, respectively.
th.manual_seed(2020) xr = th.randn(10, 2, 4, 4) * 100 yr = th.randn(10, 2, 4, 4) * 100 xc = xr[:, [0], ...] + 1j * xr[:, [1], ...] yc = yr[:, [0], ...] + 1j * yr[:, [1], ...] errr = "tb.SSELoss(cdim=1, dim=(-2, -1), reduction='mean')" err = "tb.SSELoss(cdim=None, dim=(-2, -1), reduction='mean')" # err = 'th.nn.MSELoss()' flossr = FourierLoss(err=errr, cdim=1, ftdim=(-2, -1), iftdim=None, ftn=None, iftn=None, ftnorm=None, iftnorm=None) flossc = FourierLoss(err=err, cdim=None, ftdim=(-2, -1), iftdim=None, ftn=None, iftn=None, ftnorm=None, iftnorm=None) print(flossr(xr, yr)) print(flossc(xc, yc)) flossr = FourierLoss(err=errr, cdim=1, ftdim=(-2, -1), iftdim=None, ftn=None, iftn=None, ftnorm='forward', iftnorm=None) flossc = FourierLoss(err=err, cdim=None, ftdim=(-2, -1), iftdim=None, ftn=None, iftn=None, ftnorm='forward', iftnorm=None) print(flossr(xr, yr)) print(flossc(xc, yc)) # ---output tensor(2325792.) tensor(2325792.) tensor(145362.) tensor(145362.)
- forward(P, G)
forward process
- Parameters:
P (Tensor) – predicted/estimated/reconstructed
G (Tensor) – ground-truth/target
- class torchbox.module.loss.fourier.FourierNormLoss(reduction='mean', p=1.5)
Bases:
Module
\[C = \frac{{\rm E}(|I|^2)}{[E(|I|)]^2} \]see Fast Fourier domain optimization using hybrid
- class torchbox.module.loss.fourier.FourierPhaseLoss(err='th.nn.MSELoss()', cdim=None, ftdim=(-2, -1), iftdim=None, ftn=None, iftn=None, ftnorm=None, iftnorm=None)
Bases:
Module
Fourier Domain Phase Loss
compute phase loss in fourier domain.
- Parameters:
err (str, object, optional) – string type will be converted to function by
eval()
, such as'th.nn.MSELoss()'
(default),'tb.SSELoss(cdim=None, dim=(-2, -1), reduction=None)'
,'tb.CosSimLoss(cdim=None, dim=(-2, -1), reduction=None)'
, …cdim (int, optional) – If data is complex-valued but represented as real tensors, you should specify the dimension. Otherwise, set it to None, defaults is None. For example, \({\bm X}_c\in {\mathbb C}^{N\times C\times H\times W}\) is represented as a real-valued tensor \({\bm X}_r\in {\mathbb R}^{N\times C\times H\times W\ times 2}\), then
cdim
equals to -1 or 4.ftdim (tuple, None, optional) – the dimensions for Fourier transformation. by default (-2, -1).
iftdim (tuple, None, optional) – the dimension for inverse Fourier transformation, by default None.
ftn (int, None, optional) – the number of points for Fourier transformation, by default None
iftn (int, None, optional) – the number of points for inverse Fourier transformation, by default None
ftnorm (str, None, optional) –
the normalization method for Fourier transformation, by default None
”forward” - normalize by 1/n
”backward” - no normalization
”ortho” - normalize by 1/sqrt(n) (making the FFT orthonormal)
iftnorm (str, None, optional) –
the normalization method for inverse Fourier transformation, by default None
”forward” - no normalization
”backward” - normalize by 1/n
”ortho” - normalize by 1/sqrt(n) (making the IFFT orthonormal)
please see also
th.nn.fft.fft()
andth.nn.fft.ifft()
.Examples
Compute loss of data in real and complex representation, respectively.
th.manual_seed(2020) xr = th.randn(10, 2, 4, 4) * 100 yr = th.randn(10, 2, 4, 4) * 100 xc = xr[:, [0], ...] + 1j * xr[:, [1], ...] yc = yr[:, [0], ...] + 1j * yr[:, [1], ...] errr = "tb.SSELoss(cdim=1, dim=(-2, -1), reduction='mean')" err = "tb.SSELoss(cdim=None, dim=(-2, -1), reduction='mean')" # err = 'th.nn.MSELoss()' flossr = FourierPhaseLoss(err=err, cdim=1, ftdim=(-2, -1), iftdim=None, ftn=None, iftn=None, ftnorm=None, iftnorm=None) flossc = FourierPhaseLoss(err=err, cdim=None, ftdim=(-2, -1), iftdim=None, ftn=None, iftn=None, ftnorm=None, iftnorm=None) print(flossr(xr, yr)) print(flossc(xc, yc)) flossr = FourierPhaseLoss(err=err, cdim=1, ftdim=(-2, -1), iftdim=None, ftn=None, iftn=None, ftnorm='forward', iftnorm=None) flossc = FourierPhaseLoss(err=err, cdim=None, ftdim=(-2, -1), iftdim=None, ftn=None, iftn=None, ftnorm='forward', iftnorm=None) print(flossr(xr, yr)) print(flossc(xc, yc)) # ---output tensor(106.8749) tensor(106.8749) tensor(106.8749) tensor(106.8749)
- forward(P, G)
forward process
- Parameters:
P (Tensor) – predicted/estimated/reconstructed
G (Tensor) – ground-truth/target
torchbox.module.loss.norm module
- class torchbox.module.loss.norm.FnormLoss(cdim=None, dim=None, keepdim=False, reduction='mean')
Bases:
Module
F-norm Loss
Both complex and real representation are supported.
\[{\rm norm}({\bf P}) = \|{\bf P}\|_2 = \left(\sum_{x_i\in {\bf P}}|x_i|^2\right)^{\frac{1}{2}} \]where, \(u, v\) are the real and imaginary part of x, respectively.
- Parameters:
cdim (int or None) – If
P
is complex-valued,cdim
is ignored. IfP
is real-valued andcdim
is integer thenP
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),P
will be treated as real-valueddim (int or None) – The dimension axis for computing norm. The default is
None
, which means all.keepdim (bool) – keep dimensions? (include complex dim, defalut is
False
)reduction (str, None or optional) – The operation mode of reduction,
None
,'mean'
or'sum'
(the default is ‘mean’)
- Returns:
the inputs’s f-norm.
- Return type:
tensor
Examples
th.manual_seed(2020) P = th.randn(5, 2, 3, 4) print('---norm') # real F1 = FnormLoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) F2 = FnormLoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) F3 = FnormLoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(F1, F2, F3) # complex in real format F1 = FnormLoss(cdim=1, dim=(-2, -1), reduction=None)(P, G) F2 = FnormLoss(cdim=1, dim=(-2, -1), reduction='sum')(P, G) F3 = FnormLoss(cdim=1, dim=(-2, -1), reduction='mean')(P, G) print(F1, F2, F3) # complex in complex format P = P[:, 0, ...] + 1j * P[:, 1, ...] F1 = FnormLoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) F2 = FnormLoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) F3 = FnormLoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(F1, F2, F3) ---norm tensor([[3.0401, 4.9766], [4.8830, 3.1261], [6.3124, 4.1407], [5.9283, 4.5896], [3.4909, 6.7252]]) tensor(47.2130) tensor(4.7213) tensor([5.8317, 5.7980, 7.5493, 7.4973, 7.5772]) tensor(34.2535) tensor(6.8507) tensor([5.8317, 5.7980, 7.5493, 7.4973, 7.5772]) tensor(34.2535) tensor(6.8507)
- forward(P, G)
forward process
- Parameters:
P (Tensor) – predicted/estimated/reconstructed
G (Tensor) – ground-truth/target
- class torchbox.module.loss.norm.PnormLoss(p=2, cdim=None, dim=None, keepdim=False, reduction='mean')
Bases:
Module
obtain the p-norm of a tensor
Both complex and real representation are supported.
\[{\rm pnorm}({\bf P}) = \|{\bf P}\|_p = \left(\sum_{x_i\in {\bf P}}|x_i|^p\right)^{\frac{1}{p}} \]where, \(u, v\) are the real and imaginary part of x, respectively.
- Parameters:
p (int) – Specifies the power. The default is 2.
cdim (int or None) – If
P
is complex-valued,cdim
is ignored. IfP
is real-valued andcdim
is integer thenP
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),P
will be treated as real-valueddim (int or None) – The dimension axis for computing norm. The default is
None
, which means all.keepdim (bool) – keep dimensions? (include complex dim, defalut is
False
)reduction (str, None or optional) – The operation mode of reduction,
None
,'mean'
or'sum'
(the default is ‘mean’)
- Returns:
the inputs’s p-norm.
- Return type:
tensor
Examples
th.manual_seed(2020) P = th.randn(5, 2, 3, 4) print('---norm') # real F1 = PnormLoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) F2 = PnormLoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) F3 = PnormLoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(F1, F2, F3) # complex in real format F1 = PnormLoss(cdim=1, dim=(-2, -1), reduction=None)(P, G) F2 = PnormLoss(cdim=1, dim=(-2, -1), reduction='sum')(P, G) F3 = PnormLoss(cdim=1, dim=(-2, -1), reduction='mean')(P, G) print(F1, F2, F3) # complex in complex format P = P[:, 0, ...] + 1j * P[:, 1, ...] F1 = PnormLoss(cdim=None, dim=(-2, -1), reduction=None)(P, G) F2 = PnormLoss(cdim=None, dim=(-2, -1), reduction='sum')(P, G) F3 = PnormLoss(cdim=None, dim=(-2, -1), reduction='mean')(P, G) print(F1, F2, F3) ---norm tensor([[3.0401, 4.9766], [4.8830, 3.1261], [6.3124, 4.1407], [5.9283, 4.5896], [3.4909, 6.7252]]) tensor(47.2130) tensor(4.7213) tensor([5.8317, 5.7980, 7.5493, 7.4973, 7.5772]) tensor(34.2535) tensor(6.8507) tensor([5.8317, 5.7980, 7.5493, 7.4973, 7.5772]) tensor(34.2535) tensor(6.8507)
- forward(P, G)
forward process
- Parameters:
P (Tensor) – predicted/estimated/reconstructed
G (Tensor) – ground-truth/target
torchbox.module.loss.perceptual module
- class torchbox.module.loss.perceptual.RandomProjectionLoss(mode='real', baseloss='MSE', channels=[3, 32], kernel_sizes=[(3, 3)], activations=['ReLU'], reduction='mean')
Bases:
Module
RandomProjection loss
- forward(P, G)
forward process
- Parameters:
P (Tensor) – predicted/estimated/reconstructed
G (Tensor) – ground-truth/target
- weight_init()
torchbox.module.loss.retrieval module
- class torchbox.module.loss.retrieval.DiceLoss(size_average=True, reduce=True)
Bases:
Module
- soft_dice_coeff(P, G)
- class torchbox.module.loss.retrieval.F1Loss(size_average=True, reduce=True)
Bases:
Module
F1 distance Loss
\[F_{\beta} = 1 -\frac{(1+\beta^2) * P * R}{\beta^2 *P + R} \]where,
\[{\rm PPV} = {P} = \frac{\rm TP}{{\rm TP} + {\rm FP}} \]\[{\rm TPR} = {R} = \frac{\rm TP}{{\rm TP} + {\rm FN}} \]- forward(P, G)
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class torchbox.module.loss.retrieval.IridescentLoss(size_average=True, reduce=True)
Bases:
Module
Iridescent Distance Loss
\[d_{J}({\mathbb A}, {\mathbb B})=1-J({\mathbb A}, {\mathbb B})=\frac{|{\mathbb A} \cup {\mathbb B}|-|{\mathbb A} \cap {\mathbb B}|}{|{\mathbb A} \cup {\mathbb B}|} \]- forward(P, G)
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class torchbox.module.loss.retrieval.JaccardLoss(size_average=True, reduce=True)
Bases:
Module
Jaccard distance
\[d_{J}({\mathbb A}, {\mathbb B})=1-J({\mathbb A}, {\mathbb B})=\frac{|{\mathbb A} \cup {\mathbb B}|-|{\mathbb A} \cap {\mathbb B}|}{|{\mathbb A} \cup {\mathbb B}|} \]- forward(P, G)
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
torchbox.module.loss.sparse_metric module
- class torchbox.module.loss.sparse_metric.FourierLogSparseLoss(lambd=1.0, cdim=None, dim=None, keepdim=False, reduction='mean')
Bases:
Module
- Parameters:
X (array) – the input
cdim (int or None) – If
X
is complex-valued,cdim
is ignored. IfX
is real-valued andcdim
is integer thenX
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),X
will be treated as real-valueddim (int or None) – The dimension axis for computing norm. The default is
None
, which means all.lambd (float) – weight, default is 1.
reduction (str or None, optional) – The operation mode of reduction,
None
,'mean'
or'sum'
(the default is'mean'
)
- Returns:
loss
- Return type:
scalar or array
- forward(X)
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class torchbox.module.loss.sparse_metric.LogSparseLoss(lambd=1.0, cdim=None, dim=None, keepdim=False, reduction='mean')
Bases:
Module
Log sparse loss
- Parameters:
X (array) – the input
cdim (int or None) – If
X
is complex-valued,cdim
is ignored. IfX
is real-valued andcdim
is integer thenX
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),X
will be treated as real-valueddim (int or None) – The dimension axis for computing norm. The default is
None
, which means all.lambd (float) – weight, default is 1.
reduction (str or None, optional) – The operation mode of reduction,
None
,'mean'
or'sum'
(the default is'mean'
)
- Returns:
loss
- Return type:
scalar or array
- forward(X)
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
torchbox.module.loss.variation module
- class torchbox.module.loss.variation.TotalVariation(reduction='mean', axis=0)
Bases:
Module
Total Variarion
- forward(X)
Define the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Module
instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.