torchbox.module.evaluation package

Submodules

torchbox.module.evaluation.channel module

class torchbox.module.evaluation.channel.ChnlCapCor(EsN0=30, rank=4, way='inv', cdim=None, dim=None, keepdim=False, reduction='mean')

Bases: Module

computes the capacity and correlation metric value of channel

see “MIMO-OFDM Wireless Communications with MATLAB (Yong Soo Cho, Jaekwon Kim, Won Young Yang etc.)”,

Parameters:
  • EsN0 (float) – the ratio of symbol energy to noise power spectral density, \(E_s/N_0({\rm dB}) = E_b/N_0 + 10{\rm log}_{10}K\) \(E_s/N_0({\rm dB})=10{\rm log}_{10}(T_{\rm symbol}/T_{\rm sample}) + {\rm SNR}(dB)\), default is 30

  • rank (int) – the rank of channel ( what is ), by default 4

  • way (int) – computation mode: 'det', 'hadineq' (Hadamard inequality), 'inv' (default)

  • cdim (int or None) – If H is complex-valued, cdim is ignored. If H is real-valued and cdim is an integer then H will be treated as complex-valued, in this case, cdim specifies the complex axis.

  • dim (int or None) – The dimension indexes of (sub-carrirer, BS antenna, UE antenna), The default is (-3, -2, -1).

  • keepdim (bool) – keep dimensions? (include complex dim, defalut is False)

  • reduction (str or None, optional) – The operation mode of reduction, None, 'mean' or 'sum' (the default is ‘mean’)

Examples

Here are demo codes.

import torch as th
import torchbox as tb

th.manual_seed(2020)
Nt, Nsc, Nbs, Nms = 10, 360, 64, 4
# generates the ground-truth
Hg = th.randn(Nt, 2, Nsc, Nbs, Nms)
# noised version as the predicted
Hp = tb.awgns(Hg, snrv=10, cdim=1, dim=(-3, -2, -1))

# complex in real format
metric = tb.ChnlCapCor(rank=4, cdim=1, dim=(-3, -2, -1), reduction='mean')
metric.updategt(Hg)
print(metric.forward(Hp))

Hg = Hg[:, 0, ...] + 1j * Hg[:, 1, ...]
Hp = Hp[:, 0, ...] + 1j * Hp[:, 1, ...]
# complex in complex format
metric = tb.ChnlCapCor(rank=4, cdim=None, dim=(-3, -2, -1), reduction='mean')
metric.updategt(Hg)
print(metric.forward(Hp))
print(metric.forward(Hg))

# complex in complex format
metric = tb.ChnlCapCor(30, rank=4, cdim=None, dim=(-3, -2, -1), reduction=None)
metric.updategt(Hg)
capv, corv = metric.forward(Hp)
print(capv.shape, corv.shape)

# ---output
(tensor(21.0226), tensor(0.8575))
(tensor(21.0226), tensor(0.8575))
(tensor(21.5848), tensor(1.))
torch.Size([10]) torch.Size([10, 4])
forward(Hp)

forward process

Parameters:

Hp (Tensor) – the predicted/estimated channel.

Returns:

  • capv (scalar or Tensor) – The capacity of the channel.

  • corv (scalar or Tensor) – The correlation of the channel.

updategt(Hg)

update the ground-truth

Parameters:

Hg (Tensor) – the ground-truth channel

torchbox.module.evaluation.contrast module

class torchbox.module.evaluation.contrast.Contrast(mode='way1', cdim=None, dim=None, keepdim=False, reduction='mean')

Bases: Module

way1 is defined as follows, see [1]:

\[C = \frac{\sqrt{{\rm E}\left(|I|^2 - {\rm E}(|I|^2)\right)^2}}{{\rm E}(|I|^2)} \]

way2 is defined as follows, see [2]:

\[C = \frac{{\rm E}(|I|^2)}{\left({\rm E}(|I|)\right)^2} \]

[1] Efficient Nonparametric ISAR Autofocus Algorithm Based on Contrast Maximization and Newton [2] section 13.4.1 in “Ian G. Cumming’s SAR book”

Parameters:
  • mode (str, optional) – 'way1' or 'way2'

  • cdim (int or None) – If X is complex-valued, cdim is ignored. If X is real-valued and cdim is integer then X will be treated as complex-valued, in this case, cdim specifies the complex axis; otherwise (None), X will be treated as real-valued

  • dim (int or None) – The dimension axis for computing contrast. The default is None, which means all.

  • keepdim (bool) – keep dimensions? (include complex dim, defalut is False)

  • reduction (str or None, optional) – The operation mode of reduction, None, 'mean' or 'sum' (the default is ‘mean’)

Returns:

C – The contrast value of input.

Return type:

scalar or tensor

Examples

th.manual_seed(2020)
X = th.randn(5, 2, 3, 4)

# real
C1 = Contrast(mode='way1', cdim=None, dim=(-2, -1), reduction=None)(X)
C2 = Contrast(mode='way1', cdim=None, dim=(-2, -1), reduction='sum')(X)
C3 = Contrast(mode='way1', cdim=None, dim=(-2, -1), reduction='mean')(X)
print(C1, C2, C3)

# complex in real format
C1 = Contrast(mode='way1', cdim=1, dim=(-2, -1), reduction=None)(X)
C2 = Contrast(mode='way1', cdim=1, dim=(-2, -1), reduction='sum')(X)
C3 = Contrast(mode='way1', cdim=1, dim=(-2, -1), reduction='mean')(X)
print(C1, C2, C3)

# complex in complex format
X = X[:, 0, ...] + 1j * X[:, 1, ...]
C1 = Contrast(mode='way1', cdim=None, dim=(-2, -1), reduction=None)(X)
C2 = Contrast(mode='way1', cdim=None, dim=(-2, -1), reduction='sum')(X)
C3 = Contrast(mode='way1', cdim=None, dim=(-2, -1), reduction='mean')(X)
print(C1, C2, C3)

# output
tensor([[1.2612, 1.1085],
        [1.5992, 1.2124],
        [0.8201, 0.9887],
        [1.4376, 1.0091],
        [1.1397, 1.1860]]) tensor(11.7626) tensor(1.1763)
tensor([0.6321, 1.1808, 0.5884, 1.1346, 0.6038]) tensor(4.1396) tensor(0.8279)
tensor([0.6321, 1.1808, 0.5884, 1.1346, 0.6038]) tensor(4.1396) tensor(0.8279)
forward(X)

forward process

Parameters:

X (Tensor) – The the input for computing contrast.

torchbox.module.evaluation.correlation module

class torchbox.module.evaluation.correlation.CosSim(mode='abs', cdim=None, dim=None, keepdim=False, reduction='mean')

Bases: Module

compute the cosine similarity of the inputs

If utilize the amplitude of correlation

\[{\mathcal L} = |\frac{<{\bf p}, {\bf g}>}{\|{\bf p}\|_2\|{\bf g}\|_2}| \]

If utilize the angle of correlation

\[{\mathcal L} = \angle \frac{<{\bf p}, {\bf g}>}{\|{\bf p}\|_2\|{\bf g}\|_2} \]
Parameters:
  • mode (str) – only work when P and G are complex-valued in real format or complex format. 'abs' or 'amplitude' returns the amplitude of similarity, 'angle' or 'phase' returns the phase of similarity.

  • cdim (int or None) – If P and G is complex-valued, cdim is ignored. If P and G is real-valued and cdim is integer then P and G will be treated as complex-valued, in this case, cdim specifies the complex axis; otherwise (None), P and G will be treated as real-valued

  • dim (int or None) – The dimension axis for computing correlation. The default is None, which means all.

  • keepdim (bool) – keep dimensions? (include complex dim, defalut is False)

  • reduction (str or None, optional) – The operation mode of reduction, None, 'mean' or 'sum' (the default is ‘mean’)

Returns:

Examples

import torch as th
from torchbox import CosSim

th.manual_seed(2020)
P = th.randn(5, 2, 3, 4)
G = th.randn(5, 2, 3, 4)

# real
S1 = CosSim(cdim=None, dim=(-2, -1), reduction=None)(P, G)
S2 = CosSim(cdim=None, dim=(-2, -1), reduction='sum')(P, G)
S3 = CosSim(cdim=None, dim=(-2, -1), reduction='mean')(P, G)
print(S1, S2, S3)

# complex in real format
S1 = CosSim(cdim=1, dim=(-2, -1), reduction=None)(P, G)
S2 = CosSim(cdim=1, dim=(-2, -1), reduction='sum')(P, G)
S3 = CosSim(cdim=1, dim=(-2, -1), reduction='mean')(P, G)
print(S1, S2, S3)

# complex in complex format
P = P[:, 0, ...] + 1j * P[:, 1, ...]
G = G[:, 0, ...] + 1j * G[:, 1, ...]
S1 = CosSim(cdim=None, dim=(-2, -1), reduction=None)(P, G)
S2 = CosSim(cdim=None, dim=(-2, -1), reduction='sum')(P, G)
S3 = CosSim(cdim=None, dim=(-2, -1), reduction='mean')(P, G)
print(S1, S2, S3)

# output
tensor([[0.4791, 0.0849],
        [0.0334, 0.4855],
        [0.0136, 0.2280],
        [0.4951, 0.2166],
        [0.4484, 0.4221]]) tensor(2.9068) tensor(0.2907)
tensor([[0.2926],
        [0.2912],
        [0.1505],
        [0.3993],
        [0.3350]]) tensor([1.4685]) tensor([0.2937])
tensor([0.2926, 0.2912, 0.1505, 0.3993, 0.3350]) tensor(1.4685) tensor(0.2937)
forward(P, G)

forward process

Parameters:
  • P (Tensor) – predicted/estimated/reconstructed

  • G (Tensor) – ground-truth/target

Returns:

S – The correlation of the inputs.

Return type:

Tensor

class torchbox.module.evaluation.correlation.EigVecCor(npcs=4, mode=None, cdim=None, fdim=-2, sdim=-1, keepdim=False, reduction='mean')

Bases: Module

computes the eigenvector correlation of the inputs

cosine similarity of selected eigenvectors (principal components)

Parameters:
  • mode (str) – only work when P and G are complex-valued in real format or complex format. 'abs' or 'amplitude' returns the amplitude of similarity, 'angle' or 'phase' returns the phase of similarity.

  • cdim (int or None) – If P and G is complex-valued, cdim is ignored. If P and G is real-valued and cdim is integer then P and G will be treated as complex-valued, in this case, cdim specifies the complex axis; otherwise (None), P and G will be treated as real-valued

  • fdim (int, optional) – the dimension index of feature, by default -2

  • sdim (int, optional) – the dimension index of sample, by default -1

  • keepdim (bool) – keep dimensions? (include complex dim, defalut is False)

  • reduction (str or None, optional) – The operation mode of reduction, None, 'mean' or 'sum' (the default is ‘mean’)

Returns:

Examples

import torch as th
from torchbox import EigVecCor

mode = 'abs'
th.manual_seed(2020)
P = th.randn(5, 2, 3, 4)
G = th.randn(5, 2, 3, 4)

# real
S1 = EigVecCor(npcs=4, mode=mode, cdim=None, sdim=0, fdim=(-2, -1), reduction=None)(P, G)
S2 = EigVecCor(npcs=4, mode=mode, cdim=None, sdim=0, fdim=(-2, -1), reduction='sum')(P, G)
S3 = EigVecCor(npcs=4, mode=mode, cdim=None, sdim=0, fdim=(-2, -1), reduction='mean')(P, G)
print(S1, S2, S3)

# complex in real format
S1 = EigVecCor(npcs=4, mode=mode, cdim=1, sdim=0, fdim=(-2, -1), reduction=None)(P, G)
S2 = EigVecCor(npcs=4, mode=mode, cdim=1, sdim=0, fdim=(-2, -1), reduction='sum')(P, G)
S3 = EigVecCor(npcs=4, mode=mode, cdim=1, sdim=0, fdim=(-2, -1), reduction='mean')(P, G)
print(S1, S2, S3)

# complex in complex format
P = P[:, 0, ...] + 1j * P[:, 1, ...]
G = G[:, 0, ...] + 1j * G[:, 1, ...]
S1 = EigVecCor(npcs=4, mode=mode, cdim=None, sdim=0, fdim=(-2, -1), reduction=None)(P, G)
S2 = EigVecCor(npcs=4, mode=mode, cdim=None, sdim=0, fdim=(-2, -1), reduction='sum')(P, G)
S3 = EigVecCor(npcs=4, mode=mode, cdim=None, sdim=0, fdim=(-2, -1), reduction='mean')(P, G)
print(S1, S2, S3)
forward(P, G)

forward process

Parameters:
  • P (Tensor) – predicted/estimated/reconstructed

  • G (Tensor) – ground-truth/target

class torchbox.module.evaluation.correlation.PeaCor(mode='abs', cdim=None, dim=None, keepdim=False, reduction='mean')

Bases: Module

compute the pearson correlation loss of the inputs

If utilize the amplitude of pearson correlation as loss

\[{\mathcal L} = 1 - |\frac{<{\bf p}, {\bf g}>}{\|{\bf p}\|_2\|{\bf g}\|_2}| \]

If utilize the angle of pearson correlation as loss

\[{\mathcal L} = |\angle \frac{<{\bf p}, {\bf g}>}{\|{\bf p}\|_2\|{\bf g}\|_2}| \]

where \(\bf p\) and \(\bf g\) is the centered version (removed mean) of inputs

Parameters:
  • mode (str) – only work when P and G are complex-valued in real format or complex format. 'abs' or 'amplitude' returns the amplitude of similarity, 'angle' or 'phase' returns the phase of similarity.

  • cdim (int or None) – If P and G is complex-valued, cdim is ignored. If P and G is real-valued and cdim is integer then P and G will be treated as complex-valued, in this case, cdim specifies the complex axis; otherwise (None), P and G will be treated as real-valued

  • dim (int or None) – The dimension axis for computing correlation. The default is None, which means all.

  • keepdim (bool) – keep dimensions? (include complex dim, defalut is False)

  • reduction (str or None, optional) – The operation mode of reduction, None, 'mean' or 'sum' (the default is ‘mean’)

Returns:

Examples

import torch as th
from torchbox import PeaCor

th.manual_seed(2020)
P = th.randn(5, 2, 3, 4)
G = th.randn(5, 2, 3, 4)

# real
S1 = PeaCor(cdim=None, dim=(-2, -1), reduction=None)(P, G)
S2 = PeaCor(cdim=None, dim=(-2, -1), reduction='sum')(P, G)
S3 = PeaCor(cdim=None, dim=(-2, -1), reduction='mean')(P, G)
print(S1, S2, S3)

# complex in real format
S1 = PeaCor(cdim=1, dim=(-2, -1), reduction=None)(P, G)
S2 = PeaCor(cdim=1, dim=(-2, -1), reduction='sum')(P, G)
S3 = PeaCor(cdim=1, dim=(-2, -1), reduction='mean')(P, G)
print(S1, S2, S3)

# complex in complex format
P = P[:, 0, ...] + 1j * P[:, 1, ...]
G = G[:, 0, ...] + 1j * G[:, 1, ...]
S1 = PeaCor(cdim=None, dim=(-2, -1), reduction=None)(P, G)
S2 = PeaCor(cdim=None, dim=(-2, -1), reduction='sum')(P, G)
S3 = PeaCor(cdim=None, dim=(-2, -1), reduction='mean')(P, G)
print(S1, S2, S3)

# output
tensor([[0.6010, 0.0260],
        [0.0293, 0.4981],
        [0.0063, 0.2284],
        [0.3203, 0.2851],
        [0.3757, 0.3936]]) tensor(2.7639) tensor(0.2764)
tensor([[0.3723],
        [0.2992],
        [0.1267],
        [0.3020],
        [0.2910]]) tensor([1.3911]) tensor([0.2782])
tensor([0.3723, 0.2992, 0.1267, 0.3020, 0.2910]) tensor(1.3911) tensor(0.2782)
forward(P, G)

forward process

Parameters:
  • P (Tensor) – predicted/estimated/reconstructed

  • G (Tensor) – ground-truth/target

torchbox.module.evaluation.entropy module

class torchbox.module.evaluation.entropy.Entropy(mode='shannon', cdim=None, dim=None, keepdim=False, reduction='mean')

Bases: Module

compute the entropy of the inputs

\[{\rm S} = -\sum_{n=0}^N p_i{\rm log}_2 p_n \]

where \(N\) is the number of pixels, \(p_n=\frac{|X_n|^2}{\sum_{n=0}^N|X_n|^2}\).

Parameters:
  • mode (str, optional) – The entropy mode: 'shannon' or 'natural' (the default is ‘shannon’)

  • cdim (int or None) – If X is complex-valued, cdim is ignored. If X is real-valued and cdim is integer then X will be treated as complex-valued, in this case, cdim specifies the complex axis; otherwise (None), X will be treated as real-valued

  • dim (int or None) – The dimension axis for computing entropy. The default is None, which means all.

  • keepdim (bool) – keep dimensions? (include complex dim, defalut is False)

  • reduction (str or None, optional) – The operation mode of reduction, None, 'mean' or 'sum' (the default is ‘mean’)

Returns:

S – The entropy of the inputs.

Return type:

Tensor

Examples

th.manual_seed(2020)
X = th.randn(5, 2, 3, 4)

# real
S1 = Entropy(mode='shannon', cdim=None, dim=(-2, -1), reduction=None)(X)
S2 = Entropy(mode='shannon', cdim=None, dim=(-2, -1), reduction='sum')(X)
S3 = Entropy(mode='shannon', cdim=None, dim=(-2, -1), reduction='mean')(X)
print(S1, S2, S3)

# complex in real format
S1 = Entropy(mode='shannon', cdim=1, dim=(-2, -1), reduction=None)(X)
S2 = Entropy(mode='shannon', cdim=1, dim=(-2, -1), reduction='sum')(X)
S3 = Entropy(mode='shannon', cdim=1, dim=(-2, -1), reduction='mean')(X)
print(S1, S2, S3)

# complex in complex format
X = X[:, 0, ...] + 1j * X[:, 1, ...]
S1 = Entropy(mode='shannon', cdim=None, dim=(-2, -1), reduction=None)(X)
S2 = Entropy(mode='shannon', cdim=None, dim=(-2, -1), reduction='sum')(X)
S3 = Entropy(mode='shannon', cdim=None, dim=(-2, -1), reduction='mean')(X)
print(S1, S2, S3)

# output
tensor([[2.5482, 2.7150],
        [2.0556, 2.6142],
        [2.9837, 2.9511],
        [2.4296, 2.7979],
        [2.7287, 2.5560]]) tensor(26.3800) tensor(2.6380)
tensor([3.2738, 2.5613, 3.2911, 2.7989, 3.2789]) tensor(15.2040) tensor(3.0408)
tensor([3.2738, 2.5613, 3.2911, 2.7989, 3.2789]) tensor(15.2040) tensor(3.0408)
forward(X)

forward process

Parameters:

X (Tensor) – The the input for computing entropy.

torchbox.module.evaluation.error module

class torchbox.module.evaluation.error.MAE(cdim=None, dim=None, keepdim=False, reduction='mean')

Bases: Module

computes the mean absoluted error

Both complex and real representation are supported.

\[{\rm MAE}({\bf P, G}) = \frac{1}{N}\||{\bf P} - {\bf G}|\| = \frac{1}{N}\sum_{i=1}^N |p_i - g_i| \]
Parameters:
  • cdim (int or None) – If P is complex-valued, cdim is ignored. If P is real-valued and cdim is integer then P will be treated as complex-valued, in this case, cdim specifies the complex axis; otherwise (None), P will be treated as real-valued

  • dim (int or None) – The dimension axis for computing error. The default is None, which means all.

  • keepdim (bool) – keep dimensions? (include complex dim, defalut is False)

  • reduction (str or None, optional) – The operation mode of reduction, None, 'mean' or 'sum' (the default is 'mean')

Returns:

mean absoluted error

Return type:

scalar or array

Examples

th.manual_seed(2020)
P = th.randn(5, 2, 3, 4)
G = th.randn(5, 2, 3, 4)

# real
C1 = MAE(cdim=None, dim=(-2, -1), reduction=None)(P, G)
C2 = MAE(cdim=None, dim=(-2, -1), reduction='sum')(P, G)
C3 = MAE(cdim=None, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)

# complex in real format
C1 = MAE(cdim=1, dim=(-2, -1), reduction=None)(P, G)
C2 = MAE(cdim=1, dim=(-2, -1), reduction='sum')(P, G)
C3 = MAE(cdim=1, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)

# complex in complex format
P = P[:, 0, ...] + 1j * P[:, 1, ...]
G = G[:, 0, ...] + 1j * G[:, 1, ...]
C1 = MAE(cdim=None, dim=(-2, -1), reduction=None)(P, G)
C2 = MAE(cdim=None, dim=(-2, -1), reduction='sum')(P, G)
C3 = MAE(cdim=None, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)

# ---output
[[1.06029116 1.19884877]
[0.90117091 1.13552361]
[1.23422083 0.75743914]
[1.16127965 1.42169262]
[1.25090731 1.29134222]] 11.41271620974502 1.141271620974502
[1.71298566 1.50327364 1.53328572 2.11430946 2.01435599] 8.878210471231741 1.7756420942463482
[1.71298566 1.50327364 1.53328572 2.11430946 2.01435599] 8.878210471231741 1.7756420942463482
forward(P, G)

forward process

Parameters:
  • P (Tensor) – predicted/estimated/reconstructed

  • G (Tensor) – ground-truth/target

class torchbox.module.evaluation.error.MSE(cdim=None, dim=None, keepdim=False, reduction='mean')

Bases: Module

computes the mean square error

Both complex and real representation are supported.

\[{\rm MSE}({\bf P, G}) = \frac{1}{N}\|{\bf P} - {\bf G}\|_2^2 = \frac{1}{N}\sum_{i=1}^N(|p_i - g_i|)^2 \]
Parameters:
  • cdim (int or None) – If P is complex-valued, cdim is ignored. If P is real-valued and cdim is integer then P will be treated as complex-valued, in this case, cdim specifies the complex axis; otherwise (None), P will be treated as real-valued

  • dim (int or None) – The dimension axis for computing error. The default is None, which means all.

  • keepdim (bool) – keep dimensions? (include complex dim, defalut is False)

  • reduction (str or None, optional) – The operation mode of reduction, None, 'mean' or 'sum' (the default is 'mean')

Returns:

mean square error

Return type:

scalar or array

Examples

th.manual_seed(2020)
P = th.randn(5, 2, 3, 4)
G = th.randn(5, 2, 3, 4)

# real
C1 = MSE(cdim=None, dim=(-2, -1), reduction=None)(P, G)
C2 = MSE(cdim=None, dim=(-2, -1), reduction='sum')(P, G)
C3 = MSE(cdim=None, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)

# complex in real format
C1 = MSE(cdim=1, dim=(-2, -1), reduction=None)(P, G)
C2 = MSE(cdim=1, dim=(-2, -1), reduction='sum')(P, G)
C3 = MSE(cdim=1, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)

# complex in complex format
P = P[:, 0, ...] + 1j * P[:, 1, ...]
G = G[:, 0, ...] + 1j * G[:, 1, ...]
C1 = MSE(cdim=None, dim=(-2, -1), reduction=None)(P, G)
C2 = MSE(cdim=None, dim=(-2, -1), reduction='sum')(P, G)
C3 = MSE(cdim=None, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)

# ---output
[[1.57602573 2.32844311]
[1.07232374 2.36118382]
[2.1841515  0.79002805]
[2.43036295 3.18413899]
[2.31107373 2.73990485]] 20.977636476183186 2.0977636476183186
[3.90446884 3.43350757 2.97417955 5.61450194 5.05097858] 20.977636476183186 4.195527295236637
[3.90446884 3.43350757 2.97417955 5.61450194 5.05097858] 20.977636476183186 4.195527295236637
forward(P, G)

forward process

Parameters:
  • P (Tensor) – predicted/estimated/reconstructed

  • G (Tensor) – ground-truth/target

class torchbox.module.evaluation.error.NMAE(cdim=None, dim=None, keepdim=False, reduction='mean')

Bases: Module

computes the normalized mean absoluted error

Both complex and real representation are supported.

\[{\rm MAE}({\bf P, G}) = \frac{\frac{1}{N}\||{\bf P} - {\bf G}|\|}{\||{\bf G}|\|} = \frac{\frac{1}{N}\sum_{i=1}^N |p_i - g_i|}{\sum_{i=1}^N |p_i - g_i|} \]
Parameters:
  • cdim (int or None) – If P is complex-valued, cdim is ignored. If P is real-valued and cdim is integer then P will be treated as complex-valued, in this case, cdim specifies the complex axis; otherwise (None), P will be treated as real-valued

  • dim (int or None) – The dimension axis for computing error. The default is None, which means all.

  • keepdim (bool) – keep dimensions? (include complex dim, defalut is False)

  • reduction (str or None, optional) – The operation mode of reduction, None, 'mean' or 'sum' (the default is 'mean')

Returns:

mean absoluted error

Return type:

scalar or array

Examples

th.manual_seed(2020)
P = th.randn(5, 2, 3, 4)
G = th.randn(5, 2, 3, 4)

# real
C1 = NMAE(cdim=None, dim=(-2, -1), reduction=None)(P, G)
C2 = NMAE(cdim=None, dim=(-2, -1), reduction='sum')(P, G)
C3 = NMAE(cdim=None, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)

# complex in real format
C1 = NMAE(cdim=1, dim=(-2, -1), reduction=None)(P, G)
C2 = NMAE(cdim=1, dim=(-2, -1), reduction='sum')(P, G)
C3 = NMAE(cdim=1, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)

# complex in complex format
P = P[:, 0, ...] + 1j * P[:, 1, ...]
G = G[:, 0, ...] + 1j * G[:, 1, ...]
C1 = NMAE(cdim=None, dim=(-2, -1), reduction=None)(P, G)
C2 = NMAE(cdim=None, dim=(-2, -1), reduction='sum')(P, G)
C3 = NMAE(cdim=None, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)
forward(P, G)

forward process

Parameters:
  • P (Tensor) – predicted/estimated/reconstructed

  • G (Tensor) – ground-truth/target

class torchbox.module.evaluation.error.NMSE(cdim=None, dim=None, keepdim=False, reduction='mean')

Bases: Module

computes the normalized mean square error

Both complex and real representation are supported.

\[{\rm MSE}({\bf P, G}) = \frac{\frac{1}{N}\|{\bf P} - {\bf G}\|_2^2}{\|{\bf G}\|_2^2} = \frac{\frac{1}{N}\sum_{i=1}^N(|p_i - g_i|)^2}{\sum_{i=1}^N(|p_i - g_i|)^2} \]
Parameters:
  • cdim (int or None) – If P is complex-valued, cdim is ignored. If P is real-valued and cdim is integer then P will be treated as complex-valued, in this case, cdim specifies the complex axis; otherwise (None), P will be treated as real-valued

  • dim (int or None) – The dimension axis for computing error. The default is None, which means all.

  • keepdim (bool) – keep dimensions? (include complex dim, defalut is False)

  • reduction (str or None, optional) – The operation mode of reduction, None, 'mean' or 'sum' (the default is 'mean')

Returns:

mean square error

Return type:

scalar or array

Examples

th.manual_seed(2020)
P = th.randn(5, 2, 3, 4)
G = th.randn(5, 2, 3, 4)

# real
C1 = NMSE(cdim=None, dim=(-2, -1), reduction=None)(P, G)
C2 = NMSE(cdim=None, dim=(-2, -1), reduction='sum')(P, G)
C3 = NMSE(cdim=None, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)

# complex in real format
C1 = NMSE(cdim=1, dim=(-2, -1), reduction=None)(P, G)
C2 = NMSE(cdim=1, dim=(-2, -1), reduction='sum')(P, G)
C3 = NMSE(cdim=1, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)

# complex in complex format
P = P[:, 0, ...] + 1j * P[:, 1, ...]
G = G[:, 0, ...] + 1j * G[:, 1, ...]
C1 = NMSE(cdim=None, dim=(-2, -1), reduction=None)(P, G)
C2 = NMSE(cdim=None, dim=(-2, -1), reduction='sum')(P, G)
C3 = NMSE(cdim=None, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)
forward(P, G)

forward process

Parameters:
  • P (Tensor) – predicted/estimated/reconstructed

  • G (Tensor) – ground-truth/target

class torchbox.module.evaluation.error.NSAE(cdim=None, dim=None, keepdim=False, reduction='mean')

Bases: Module

computes the normalized sum absoluted error

Both complex and real representation are supported.

\[{\rm SAE}({\bf P, G}) = \frac{\||{\bf P} - {\bf G}|\|}{\|{\bf G}|\|} = \frac{\sum_{i=1}^N |p_i - g_i|}{\sum_{i=1}^N |g_i|} \]
Parameters:
  • cdim (int or None) – If P is complex-valued, cdim is ignored. If P is real-valued and cdim is integer then P will be treated as complex-valued, in this case, cdim specifies the complex axis; otherwise (None), P will be treated as real-valued

  • dim (int or None) – The dimension axis for computing error. The default is None, which means all.

  • keepdim (bool) – keep dimensions? (include complex dim, defalut is False)

  • reduction (str or None, optional) – The operation mode of reduction, None, 'mean' or 'sum' (the default is 'mean')

Returns:

sum absoluted error

Return type:

scalar or array

Examples

th.manual_seed(2020)
P = th.randn(5, 2, 3, 4)
G = th.randn(5, 2, 3, 4)

# real
C1 = NSAE(cdim=None, dim=(-2, -1), reduction=None)(P, G)
C2 = NSAE(cdim=None, dim=(-2, -1), reduction='sum')(P, G)
C3 = NSAE(cdim=None, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)

# complex in real format
C1 = NSAE(cdim=1, dim=(-2, -1), reduction=None)(P, G)
C2 = NSAE(cdim=1, dim=(-2, -1), reduction='sum')(P, G)
C3 = NSAE(cdim=1, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)

# complex in complex format
P = P[:, 0, ...] + 1j * P[:, 1, ...]
G = G[:, 0, ...] + 1j * G[:, 1, ...]
C1 = NSAE(cdim=None, dim=(-2, -1), reduction=None)(P, G)
C2 = NSAE(cdim=None, dim=(-2, -1), reduction='sum')(P, G)
C3 = NSAE(cdim=None, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)
forward(P, G)

forward process

Parameters:
  • P (Tensor) – predicted/estimated/reconstructed

  • G (Tensor) – ground-truth/target

class torchbox.module.evaluation.error.NSSE(cdim=None, dim=None, keepdim=False, reduction='mean')

Bases: Module

computes the normalized sum square error

Both complex and real representation are supported.

\[{\rm SSE}({\bf P, G}) = \frac{\|{\bf P} - {\bf G}\|_2^2}{\|{\bf G}\|_2^2} = \frac{\sum_{i=1}^N(|p_i - g_i|)^2}{\sum_{i=1}^N(|g_i|)^2} \]
Parameters:
  • cdim (int or None) – If P is complex-valued, cdim is ignored. If P is real-valued and cdim is integer then P will be treated as complex-valued, in this case, cdim specifies the complex axis; otherwise (None), P will be treated as real-valued

  • dim (int or None) – The dimension axis for computing error. The default is None, which means all.

  • keepdim (bool) – keep dimensions? (include complex dim, defalut is False)

  • reduction (str or None, optional) – The operation mode of reduction, None, 'mean' or 'sum' (the default is 'mean')

Returns:

sum square error

Return type:

scalar or array

Examples

th.manual_seed(2020)
P = th.randn(5, 2, 3, 4)
G = th.randn(5, 2, 3, 4)

# real
C1 = NSSE(cdim=None, dim=(-2, -1), reduction=None)(P, G)
C2 = NSSE(cdim=None, dim=(-2, -1), reduction='sum')(P, G)
C3 = NSSE(cdim=None, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)

# complex in real format
C1 = NSSE(cdim=1, dim=(-2, -1), reduction=None)(P, G)
C2 = NSSE(cdim=1, dim=(-2, -1), reduction='sum')(P, G)
C3 = NSSE(cdim=1, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)

# complex in complex format
P = P[:, 0, ...] + 1j * P[:, 1, ...]
G = G[:, 0, ...] + 1j * G[:, 1, ...]
C1 = NSSE(cdim=None, dim=(-2, -1), reduction=None)(P, G)
C2 = NSSE(cdim=None, dim=(-2, -1), reduction='sum')(P, G)
C3 = NSSE(cdim=None, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)
forward(P, G)

forward process

Parameters:
  • P (Tensor) – predicted/estimated/reconstructed

  • G (Tensor) – ground-truth/target

class torchbox.module.evaluation.error.SAE(cdim=None, dim=None, keepdim=False, reduction='mean')

Bases: Module

computes the sum absoluted error

Both complex and real representation are supported.

\[{\rm SAE}({\bf P, G}) = \||{\bf P} - {\bf G}|\| = \sum_{i=1}^N |p_i - g_i| \]
Parameters:
  • cdim (int or None) – If P is complex-valued, cdim is ignored. If P is real-valued and cdim is integer then P will be treated as complex-valued, in this case, cdim specifies the complex axis; otherwise (None), P will be treated as real-valued

  • dim (int or None) – The dimension axis for computing error. The default is None, which means all.

  • keepdim (bool) – keep dimensions? (include complex dim, defalut is False)

  • reduction (str or None, optional) – The operation mode of reduction, None, 'mean' or 'sum' (the default is 'mean')

Returns:

sum absoluted error

Return type:

scalar or array

Examples

th.manual_seed(2020)
P = th.randn(5, 2, 3, 4)
G = th.randn(5, 2, 3, 4)

# real
C1 = SAE(cdim=None, dim=(-2, -1), reduction=None)(P, G)
C2 = SAE(cdim=None, dim=(-2, -1), reduction='sum')(P, G)
C3 = SAE(cdim=None, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)

# complex in real format
C1 = SAE(cdim=1, dim=(-2, -1), reduction=None)(P, G)
C2 = SAE(cdim=1, dim=(-2, -1), reduction='sum')(P, G)
C3 = SAE(cdim=1, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)

# complex in complex format
P = P[:, 0, ...] + 1j * P[:, 1, ...]
G = G[:, 0, ...] + 1j * G[:, 1, ...]
C1 = SAE(cdim=None, dim=(-2, -1), reduction=None)(P, G)
C2 = SAE(cdim=None, dim=(-2, -1), reduction='sum')(P, G)
C3 = SAE(cdim=None, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)

# ---output
[[12.72349388 14.3861852 ]
[10.81405096 13.62628335]
[14.81065     9.08926963]
[13.93535577 17.0603114 ]
[15.0108877  15.49610662]] 136.95259451694022 13.695259451694023
[20.55582795 18.03928365 18.39942858 25.37171356 24.17227192] 106.53852565478087 21.307705130956172
[20.55582795 18.03928365 18.39942858 25.37171356 24.17227192] 106.5385256547809 21.30770513095618
forward(P, G)

forward process

Parameters:
  • P (Tensor) – predicted/estimated/reconstructed

  • G (Tensor) – ground-truth/target

class torchbox.module.evaluation.error.SSE(cdim=None, dim=None, keepdim=False, reduction='mean')

Bases: Module

computes the sum square error

Both complex and real representation are supported.

\[{\rm SSE}({\bf P, G}) = \|{\bf P} - {\bf G}\|_2^2 = \sum_{i=1}^N(|p_i - g_i|)^2 \]
Parameters:
  • cdim (int or None) – If P is complex-valued, cdim is ignored. If P is real-valued and cdim is integer then P will be treated as complex-valued, in this case, cdim specifies the complex axis; otherwise (None), P will be treated as real-valued

  • dim (int or None) – The dimension axis for computing error. The default is None, which means all.

  • keepdim (bool) – keep dimensions? (include complex dim, defalut is False)

  • reduction (str or None, optional) – The operation mode of reduction, None, 'mean' or 'sum' (the default is 'mean')

Returns:

sum square error

Return type:

scalar or array

Examples

th.manual_seed(2020)
P = th.randn(5, 2, 3, 4)
G = th.randn(5, 2, 3, 4)

# real
C1 = SSE(cdim=None, dim=(-2, -1), reduction=None)(P, G)
C2 = SSE(cdim=None, dim=(-2, -1), reduction='sum')(P, G)
C3 = SSE(cdim=None, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)

# complex in real format
C1 = SSE(cdim=1, dim=(-2, -1), reduction=None)(P, G)
C2 = SSE(cdim=1, dim=(-2, -1), reduction='sum')(P, G)
C3 = SSE(cdim=1, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)

# complex in complex format
P = P[:, 0, ...] + 1j * P[:, 1, ...]
G = G[:, 0, ...] + 1j * G[:, 1, ...]
C1 = SSE(cdim=None, dim=(-2, -1), reduction=None)(P, G)
C2 = SSE(cdim=None, dim=(-2, -1), reduction='sum')(P, G)
C3 = SSE(cdim=None, dim=(-2, -1), reduction='mean')(P, G)
print(C1, C2, C3)

# ---output
[[18.91230872 27.94131733]
[12.86788492 28.33420589]
[26.209818    9.48033663]
[29.16435541 38.20966786]
[27.73288477 32.87885818]] 251.73163771419823 25.173163771419823
[46.85362605 41.20209081 35.69015462 67.37402327 60.61174295] 251.73163771419823 50.346327542839646
[46.85362605 41.20209081 35.69015462 67.37402327 60.61174295] 251.73163771419823 50.346327542839646
forward(P, G)

forward process

Parameters:
  • P (Tensor) – predicted/estimated/reconstructed

  • G (Tensor) – ground-truth/target

torchbox.module.evaluation.norm module

class torchbox.module.evaluation.norm.Fnorm(cdim=None, dim=None, keepdim=False, reduction='mean')

Bases: Module

obtain the f-norm of a tensor

Both complex and real representation are supported.

\[{\rm norm}({\bf X}) = \|{\bf X}\|_2 = \left(\sum_{x_i\in {\bf X}}|x_i|^2\right)^{\frac{1}{2}} \]

where, \(u, v\) are the real and imaginary part of x, respectively.

Parameters:
  • cdim (int or None) – If X is complex-valued, cdim is ignored. If X is real-valued and cdim is integer then X will be treated as complex-valued, in this case, cdim specifies the complex axis; otherwise (None), X will be treated as real-valued

  • dim (int or None) – The dimension axis for computing norm. The default is None, which means all.

  • keepdim (bool) – keep dimensions? (include complex dim, defalut is False)

  • reduction (str, None or optional) – The operation mode of reduction, None, 'mean' or 'sum' (the default is ‘mean’)

Returns:

the inputs’s f-norm.

Return type:

tensor

Examples

th.manual_seed(2020)
X = th.randn(5, 2, 3, 4)
print('---norm')

# real
F1 = Fnorm(cdim=None, dim=(-2, -1), reduction=None)(X)
F2 = Fnorm(cdim=None, dim=(-2, -1), reduction='sum')(X)
F3 = Fnorm(cdim=None, dim=(-2, -1), reduction='mean')(X)
print(F1, F2, F3)

# complex in real format
F1 = Fnorm(cdim=1, dim=(-2, -1), reduction=None)(X)
F2 = Fnorm(cdim=1, dim=(-2, -1), reduction='sum')(X)
F3 = Fnorm(cdim=1, dim=(-2, -1), reduction='mean')(X)
print(F1, F2, F3)

# complex in complex format
X = X[:, 0, ...] + 1j * X[:, 1, ...]
F1 = Fnorm(cdim=None, dim=(-2, -1), reduction=None)(X)
F2 = Fnorm(cdim=None, dim=(-2, -1), reduction='sum')(X)
F3 = Fnorm(cdim=None, dim=(-2, -1), reduction='mean')(X)
print(F1, F2, F3)

---norm
tensor([[2.8719, 2.8263],
        [3.1785, 3.4701],
        [4.6697, 3.2955],
        [3.0992, 2.6447],
        [3.5341, 3.5779]]) tensor(33.1679) tensor(3.3168)
tensor([4.0294, 4.7058, 5.7154, 4.0743, 5.0290]) tensor(23.5539) tensor(4.7108)
tensor([4.0294, 4.7058, 5.7154, 4.0743, 5.0290]) tensor(23.5539) tensor(4.7108)
forward(X)

forward process

Parameters:

X (Tensor) – The the input for computing norm.

class torchbox.module.evaluation.norm.Pnorm(p=2, cdim=None, dim=None, keepdim=False, reduction='mean')

Bases: Module

obtain the p-norm of a tensor

Both complex and real representation are supported.

\[{\rm pnorm}({\bf X}) = \|{\bf X}\|_p = \left(\sum_{x_i\in {\bf X}}|x_i|^p\right)^{\frac{1}{p}} \]

where, \(u, v\) are the real and imaginary part of x, respectively.

Parameters:
  • p (int) – Specifies the power. The default is 2.

  • cdim (int or None) – If X is complex-valued, cdim is ignored. If X is real-valued and cdim is integer then X will be treated as complex-valued, in this case, cdim specifies the complex axis; otherwise (None), X will be treated as real-valued

  • dim (int or None) – The dimension axis for computing norm. The default is None, which means all.

  • keepdim (bool) – keep dimensions? (include complex dim, defalut is False)

  • reduction (str, None or optional) – The operation mode of reduction, None, 'mean' or 'sum' (the default is ‘mean’)

Returns:

the inputs’s p-norm.

Return type:

tensor

Examples

th.manual_seed(2020)
X = th.randn(5, 2, 3, 4)
print('---pnorm')

# real
F1 = Pnorm(cdim=None, dim=(-2, -1), reduction=None)(X)
F2 = Pnorm(cdim=None, dim=(-2, -1), reduction='sum')(X)
F3 = Pnorm(cdim=None, dim=(-2, -1), reduction='mean')(X)
print(F1, F2, F3)

# complex in real format
F1 = Pnorm(cdim=1, dim=(-2, -1), reduction=None)(X)
F2 = Pnorm(cdim=1, dim=(-2, -1), reduction='sum')(X)
F3 = Pnorm(cdim=1, dim=(-2, -1), reduction='mean')(X)
print(F1, F2, F3)

# complex in complex format
X = X[:, 0, ...] + 1j * X[:, 1, ...]
F1 = Pnorm(cdim=None, dim=(-2, -1), reduction=None)(X)
F2 = Pnorm(cdim=None, dim=(-2, -1), reduction='sum')(X)
F3 = Pnorm(cdim=None, dim=(-2, -1), reduction='mean')(X)
print(F1, F2, F3)

---pnorm
tensor([[2.8719, 2.8263],
        [3.1785, 3.4701],
        [4.6697, 3.2955],
        [3.0992, 2.6447],
        [3.5341, 3.5779]]) tensor(33.1679) tensor(3.3168)
tensor([4.0294, 4.7058, 5.7154, 4.0743, 5.0290]) tensor(23.5539) tensor(4.7108)
tensor([4.0294, 4.7058, 5.7154, 4.0743, 5.0290]) tensor(23.5539) tensor(4.7108)
forward(X)

forward process

Parameters:

X (Tensor) – The the input for computing norm.

torchbox.module.evaluation.retrieval module

class torchbox.module.evaluation.retrieval.Dice(size_average=True, reduce=True)

Bases: Module

soft_dice_coeff(P, G)
class torchbox.module.evaluation.retrieval.F1(size_average=True, reduce=True)

Bases: Module

F1 distance

\[F_{\beta} = 1 -\frac{(1+\beta^2) P R}{\beta^2 P + R} \]

where,

\[{\rm PPV} = {P} = \frac{\rm TP}{{\rm TP} + {\rm FP}} \]
\[{\rm TPR} = {R} = \frac{\rm TP}{{\rm TP} + {\rm FN}} \]
forward(P, G)

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class torchbox.module.evaluation.retrieval.Iridescent(size_average=True, reduce=True)

Bases: Module

Iridescent Distance

\[d_{J}({\mathbb A}, {\mathbb B})=1-J({\mathbb A}, {\mathbb B})=\frac{|{\mathbb A} \cup {\mathbb B}|-|{\mathbb A} \cap {\mathbb B}|}{|{\mathbb A} \cup {\mathbb B}|} \]
forward(P, G)

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class torchbox.module.evaluation.retrieval.Jaccard(size_average=True, reduce=True)

Bases: Module

Jaccard distance

\[d_{J}({\mathbb A}, {\mathbb B})=1-J({\mathbb A}, {\mathbb B})=\frac{|{\mathbb A} \cup {\mathbb B}|-|{\mathbb A} \cap {\mathbb B}|}{|{\mathbb A} \cup {\mathbb B}|} \]
forward(P, G)

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

torchbox.module.evaluation.ssims module

class torchbox.module.evaluation.ssims.MSSSIM(data_range=255, size_average=True, win_size=11, win_sigma=1.5, channel=3, spatial_dims=2, weights=None, K=(0.01, 0.03))

Bases: Module

forward(X, Y)

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

class torchbox.module.evaluation.ssims.SSIM(data_range=255, size_average=True, win_size=11, win_sigma=1.5, channel=3, spatial_dims=2, K=(0.01, 0.03), nonnegative_ssim=False)

Bases: Module

forward(X, Y)

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

torchbox.module.evaluation.variation module

class torchbox.module.evaluation.variation.TotalVariation(axis=0, reduction='mean')

Bases: Module

Total Variarion

# https://www.wikiwand.com/en/Total_variation_denoising

diff_i = torch.sum(torch.abs(y_hat[:, :, :, 1:] - y_hat[:, :, :, :-1])) diff_j = torch.sum(torch.abs(y_hat[:, :, 1:, :] - y_hat[:, :, :-1, :])) tv_loss = TV_WEIGHT*(diff_i + diff_j)

forward(X)

Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within this function, one should call the Module instance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.

Module contents