torchbox.base package
Submodules
torchbox.base.arrayops module
- torchbox.base.arrayops.arraycomb(arrays, out=None)
compute the elemnts combination of several lists.
- Parameters:
- Returns:
The combination results.
- Return type:
tensor
Examples:
Compute the combination of three lists: \([1,2,3]\), \([4, 5]\), \([6,7]\), this will produce a \(12\times 3\) array.
x = arraycomb(([1, 2, 3], [4, 5], [6, 7])) print(x, x.shape) # output: [[1 4 6] [1 4 7] [1 5 6] [1 5 7] [2 4 6] [2 4 7] [2 5 6] [2 5 7] [3 4 6] [3 4 7] [3 5 6] [3 5 7]] (12, 3)
- torchbox.base.arrayops.cut(x, pos, axis=None, **kwargs)
Cut array at given position.
Cut array at given position.
- torchbox.base.arrayops.merge(x, dim, keepdim=False)
merge tensor’s dimensions
- Parameters:
- Returns:
merged tensor.
- Return type:
tensor
- torchbox.base.arrayops.permute(X, dim, mode=None, dir='f')
permutes axes of tensor
- Parameters:
X (Tensor) – the input tensor
dim (list or tuple) – the order of new dimensions (
mode
isNone
) or multiplication dimensions ('matmul'
)mode (str or None, optional) – permution mode,
'matmul'
for matrix multiplication,'merge'
for dimension merging (putting the dimensions specified by second and subsequent elements ofdim
after the dimension specified by the specified by the first element ofdim
),None
for regular permute, such as torch.permute, by defaultNone
.dir (str, optional) – the direction,
'f'
or'b'
(reverse process of'f'
), default is'f'
.
- torchbox.base.arrayops.reduce(X, dim, keepdim, reduction)
reduce tensor in speciffied dimensions
- torchbox.base.arrayops.roll(x, dim, shifts)
cyclic shift along specified dimension
Roll the tensor
x
along the given dimension. Elements that are shifted beyond the last position are re-introduced at the first position.see How to shift columns (or rows) in a tensor with different offsets in PyTorch?
- Parameters:
x (Tensor) – the input
dim (int or None) – if
dim
isNone
, the tensor will be flattened before rolling and then restored to the original shape.shifts (int or Tensor) – the number of shifts, if
shifts
is an integer, all the data will be shifted with the same shifts, otherwise, will be shifted with different shifts which are specified by shifts.
- Returns:
the shifted tensor.
- Return type:
Tensor
Examples
print('-------roll-------') x = th.rand(5, 7) print(x.shape) print(x) print('-------roll with the same shifts-------') print(roll(x, 1, 2)) print('-------roll with different shifts-------') print(roll(x, 1, th.arange(1, 6))) print('-------roll a three-dimensional tensor-------') x = th.rand(5, 7, 3) y = roll(x, 1, th.arange(1, 6).view(5, 1).repeat(1, 3)) print(x.shape) print(y.shape) print(x[..., 1]) print(y[..., 1])
- torchbox.base.arrayops.sl(dims, axis, idx=None, **kwargs)
Slice any axis
generates slice in specified axis.
- Parameters:
- Returns:
slice for specified axis elements.
- Return type:
Examples
import numpy as np np.random.seed(2020) X = np.random.randint(0, 100, (9, 10)) print(X, 'X) print(X[sl(2, -1, [0, 1])], 'Xsl') # output: [[96 8 67 67 91 3 71 56 29 48] [32 24 74 9 51 11 55 62 67 69] [48 28 20 8 38 84 65 1 79 69] [74 73 62 21 29 90 6 38 22 63] [21 68 6 98 3 20 55 1 52 9] [83 82 65 42 66 55 33 80 82 72] [94 91 14 14 75 5 38 83 99 10] [80 64 79 30 84 22 46 26 60 13] [24 63 25 89 9 69 47 89 55 75]] X [[96 8] [32 24] [48 28] [74 73] [21 68] [83 82] [94 91] [80 64] [24 63]] Xsl
- torchbox.base.arrayops.swap(x, dim1, dim2)
swap dimensions of input
torchbox.base.baseops module
- torchbox.base.baseops.argsort(x, reverse=False)
returns index of sorted array
- torchbox.base.baseops.cat(shapes, axis=0)
Concatenates
Concatenates the given sequence of seq shapes in the given dimension. All tensors must either have the same shape (except in the concatenating dimension) or be empty.
- Parameters:
shapes (tuples or lists) – (shape1, shape2, …)
axis (int, optional) – specify the concatenated axis (the default is 0)
- Returns:
concatenated shape
- Return type:
- Raises:
ValueError – Shapes are not consistent in axises except the specified one.
- torchbox.base.baseops.dimmerge(ndim, mdim, dim, keepdim=False)
obtain new dimension indexes after merging
- torchbox.base.baseops.dimpermute(ndim, dim, mode=None, dir='f')
permutes dimensions
- Parameters:
ndim (int) – the number of dimensions
dim (list or tuple) – the order of new dimensions (
mode
isNone
) or multiplication dimensions ('matmul'
)mode (str or None, optional) – permution mode,
'matmul'
for matrix multiplication,'merge'
for dimension merging (putting the dimensions specified by second and subsequent elements ofdim
after the dimension specified by the specified by the first element ofdim
),None
for regular permute, such as torch.permute, by defaultNone
.dir (str, optional) – the direction,
'f'
or'b'
(reverse process of'f'
), default is'f'
.
- torchbox.base.baseops.dimpos(ndim, dim)
make positive dimensions
- torchbox.base.baseops.dimreduce(ndim, cdim, dim, keepcdim=False, reduction=None)
get dimensions for reduction operation
- Parameters:
ndim (int) – the number of dimensions
cdim (int, optional) – if the data is complex-valued but represented as real tensors, you should specify the dimension. Otherwise, set it to
None
dim (int, list, tuple or None) – dimensions for processing,
None
means allkeepcdim (bool) – keep the complex dimension? The default is
False
reduction (str or None, optional) – The operation in other dimensions except the dimensions specified by
dim
,None
,'mean'
or'sum'
(the default isNone
)
- torchbox.base.baseops.dmka(D, Ds)
Multiple key-value assign to a dict
- torchbox.base.baseops.dreplace(d, fv=None, rv='None', new=False)
replace dict value
- torchbox.base.baseops.rmcdim(ndim, cdim, dim, keepdim)
get dimension indexes after removing cdim
- Parameters:
ndim (int) – the number of dimensions
cdim (int, optional) – If data is complex-valued but represented as real tensors, you should specify the dimension. Otherwise, set it to
None
dim (int, None, tuple or list) – dimensions to be re-defined
keepdim (bool) – keep dimensions? (include complex dim, defalut is
False
)
- Returns:
re-defined dimensions
- Return type:
- torchbox.base.baseops.upkeys(D, mode='-', k='module.')
update keys of a dictionary
- Parameters:
- Returns:
new dictionary with keys updated
- Return type:
torchbox.base.mathops module
- torchbox.base.mathops.abs(X, cdim=None, keepdim=False)
obtain amplitude of a tensor
Both complex and real representation are supported.
\[{\rm abs}({\bf X}) = |x| = \sqrt{u^2 + v^2}, x\in {\bf X} \]where, \(u, v\) are the real and imaginary part of x, respectively.
- Parameters:
X (Tensor) – input
cdim (int or None) – If
X
is complex-valued,cdim
is ignored. IfX
is real-valued andcdim
is integer thenX
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),X
will be treated as real-valuedkeepdim (bool, optional) – keep dimensions? (include complex dim, defalut is
False
) (only work when the dimension atcdim
equals 2)
- Returns:
the inputs’s amplitude.
- Return type:
tensor
Examples
th.manual_seed(2020) X = th.rand((2, 3, 3)) print('---abs') print(abs(X)) # real print(abs(X, cdim=0)) # complex in real print(abs(X[0] + 1j * X[1])) # complex in complex # ---output ---abs tensor([[0.7968, 0.5504, 0.9957], [0.7868, 0.7011, 0.9326], [0.8113, 1.0793, 0.2535]]) tensor([[0.7968, 0.5504, 0.9957], [0.7868, 0.7011, 0.9326], [0.8113, 1.0793, 0.2535]])
- torchbox.base.mathops.angle(X, cdim=None, keepdim=False)
obtain angle
Both complex and real representation are supported.
\[{\rm angle}(x) = {\rm atan}(\frac{v}{u}), x\in {\bf X} \]where, \(u, v\) are the real and imaginary part of x, respectively.
- Parameters:
X (Tensor) – input
cdim (int or None) – If
X
is complex-valued,cdim
is ignored. IfX
is real-valued andcdim
is integer thenX
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),X
will be treated as real-valuedkeepdim (bool, optional) – keep dimensions? (include complex dim, defalut is
False
) (only work when the dimension atcdim
equals 2)
- Returns:
the angles of inputs.
- Return type:
tensor
Examples
th.manual_seed(2020) X = th.rand((2, 3, 3)) print('---angle') print(angle(X)) # real print(angle(X, cdim=0)) # complex in real print(angle(X[0] + 1j * X[1])) # complex in complex
- torchbox.base.mathops.c2r(X, cdim=-1, keepdim=False)
complex representaion to real representaion
- Parameters:
X (Tensor) – input in complex representaion
cdim (int, optional) – real and imag dimension in real format, by default -1
keepdim (bool, optional) – keep dimension, if
False
, stacks (make a new axis) at dimensioncdim
, otherwise concatenates the real and imag part at exist dimensioncdim
, (Default isFalse
).
- Returns:
tensor – output in real representaion
see also
r2c()
Examples
th.manual_seed(2020) Xr = th.randint(0, 30, (3, 3, 2)) Xc = Xr[..., 0] + 1j * Xr[..., 1] Yr = c2r(Xc, cdim=0) Yc = r2c(Yr, cdim=0) print(Xr, Xr.shape, 'Xr') print(Xc, Xc.shape, 'Xc') print(Yr, Yr.shape, 'Yr') print(Yc, Yc.shape, 'Yc') # ---output tensor([[[20, 6], [27, 12], [25, 21]], [[21, 19], [29, 24], [25, 10]], [[16, 14], [ 6, 9], [ 5, 29]]]) torch.Size([3, 3, 2]) Xr tensor([[20.+6.j, 27.+12.j, 25.+21.j], [21.+19.j, 29.+24.j, 25.+10.j], [16.+14.j, 6.+9.j, 5.+29.j]]) torch.Size([3, 3]) Xc tensor([[[20., 27., 25.], [21., 29., 25.], [16., 6., 5.]], [[ 6., 12., 21.], [19., 24., 10.], [14., 9., 29.]]]) torch.Size([2, 3, 3]) Yr tensor([[20.+6.j, 27.+12.j, 25.+21.j], [21.+19.j, 29.+24.j, 25.+10.j], [16.+14.j, 6.+9.j, 5.+29.j]]) torch.Size([3, 3]) Yc
- torchbox.base.mathops.conj(X, cdim=None)
conjugates a tensor
Both complex and real representation are supported.
- Parameters:
X (Tensor) – input
cdim (int or None) – If
X
is complex-valued,cdim
is ignored. IfX
is real-valued andcdim
is integer thenX
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),X
will be treated as real-valued
- Returns:
the inputs’s conjugate matrix.
- Return type:
tensor
Examples
th.manual_seed(2020) X = th.rand((2, 3, 3)) print('---conj') print(conj(X, cdim=0)) print(conj(X[0] + 1j * X[1])) # ---output ---conj tensor([[[ 0.4869, 0.1052, 0.5883], [ 0.1161, 0.4949, 0.2824], [ 0.5899, 0.8105, 0.2512]], [[-0.6307, -0.5403, -0.8033], [-0.7781, -0.4966, -0.8888], [-0.5570, -0.7127, -0.0339]]]) tensor([[0.4869-0.6307j, 0.1052-0.5403j, 0.5883-0.8033j], [0.1161-0.7781j, 0.4949-0.4966j, 0.2824-0.8888j], [0.5899-0.5570j, 0.8105-0.7127j, 0.2512-0.0339j]])
- torchbox.base.mathops.cov(X, Y, biased=False, cdim=None, dim=None, keepdim=False)
Calculates the covariance over the specified dimensions
\[\operatorname{cov}_w(x, y)=\frac{\sum_{i=1}^N\left(x_i-\bar{x}\right)\left(y_i-\bar{y}\right)}{N-\delta} \]where \(\delta = 0\) for biased estimation, \(\delta = 1\) for unbiased estimation.
- Parameters:
X (Tensor) – the first input tensor
Y (Tensor) – the second input tensor
biased (bool, optional) –
True
for N,False
for N-1, by defaultFalse
cdim (int or None) – If
X
is complex-valued,cdim
is ignored. IfX
is real-valued andcdim
is integer thenX
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),X
will be treated as real-valueddim (int, list or None, optional) – the dimensions for calculation, by default None (all dims)
keepdim (bool, optional) – keep dimensions? (include complex dim, defalut is
False
)
- Returns:
the result
- Return type:
tensor
Examples
th.manual_seed(2020) X = th.rand((2, 3, 3)) Y = th.rand((2, 3, 3)) print(cov(X, Y)) # real print(cov(X, Y, cdim=0)) # complex in real print(cov(X[0] + 1j * X[1], Y[0] + 1j * Y[1])) # complex in complex
- torchbox.base.mathops.db2mag(db, s=20.0)
Converts decibel values to magnitudes
\[{\rm mag} = 10^{db / s} \]
- torchbox.base.mathops.dot(X, Y, mode='xyh', cdim=None, dim=None, keepdim=False)
dot product or inner product
\[= xy^H \] Note
the
dot()
function in numpy and pytorch compute the inner product by \(<x,y> = xy\).- Parameters:
X (Tensor) – the left input
Y (Tensor) – the right input
mode (str) –
'xyh'
for \(<x,y> = xy^H\) (default),'xy'
for \(<x,y> = xy\), where \(y^H\) is the complex conjection of \(y\)cdim (int or None) – If
X
is complex-valued,cdim
is ignored. IfX
is real-valued andcdim
is integer thenX
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),X
will be treated as real-valueddim (tuple, None, optional) – The dimension axis for computing dot product. The default is
None
, which means all.keepdim (bool) – keep dimensions? (include complex dim, defalut is
False
)
Examples
th.manual_seed(2020) X = th.rand((2, 3, 3)) print(dot(X, X)) # real print(dot(X, X, cdim=0)) # complex in real print(dot(X[0] + 1j * X[1], X[0] + 1j * X[1])) # complex in complex
- torchbox.base.mathops.ebeo(a, b, op='+')
element by element operation
Element by element operation.
- Parameters:
a (list, tuple, tensor or array) – The first list/tuple/nparray/tensor.
b (list, tuple, tensor or array) – The second list/tuple/nparray/tensor.
op (str, optional) – Supported operations are: -
'+'
or'add'
for addition (default) -'-'
or'sub'
for substraction -'*'
or'mul'
for multiplication -'/'
or'div'
for division -'**'
orpow
for power -'<'
, or'lt'
for less than -'<='
, or'le'
for less than or equal to -'>'
, or'gt'
for greater than -'>='
, or'ge'
for greater than or equal to -'&'
for bitwise and -'|'
for bitwise or -'^'
for bitwise xor - function for custom operation.
- Raises:
TypeError – If the specified operator not in the above list, raise a TypeError.
- torchbox.base.mathops.ematmul(A, B, **kwargs)
Element-by-element complex multiplication
like A .* B in matlab
- Parameters:
A (Tensor) – any size tensor, both complex and real representation are supported. For real representation, the real and imaginary dimension is specified by
cdim
orcaxis
.B (Tensor) – any size tensor, both complex and real representation are supported. For real representation, the real and imaginary dimension is specified by
cdim
orcaxis
.cdim (int or None, optional) – if
A
andB
are complex tensors but represented in real format,cdim
orcaxis
should be specified (Default isNone
).
- Returns:
result of element-by-element complex multiplication with the same repesentation as
A
andB
.- Return type:
tensor
Examples
th.manual_seed(2020) Ar = th.randn((3, 3, 2)) Br = th.randn((3, 3, 2)) Ac = th.view_as_complex(Ar) Bc = th.view_as_complex(Br) Mr = th.view_as_real(Ac * Bc) print(th.sum(Mr - ematmul(Ar, Br, cdim=-1))) print(th.sum(Ac * Bc - ematmul(Ac, Bc))) # output tensor(-1.1921e-07) tensor(0.+0.j)
- torchbox.base.mathops.fnab(n)
gives the closest two integer number factor of a number
Examples
print(fnab(5)) print(fnab(6)) print(fnab(7)) print(fnab(8)) print(fnab(9)) # ---output (2, 3) (2, 3) (2, 4) (2, 4) (3, 3)
- torchbox.base.mathops.imag(X, cdim=None, keepdim=False)
obtain imaginary part of a tensor
Both complex and real representation are supported.
- Parameters:
X (Tensor) – input
cdim (int or None) – If
X
is complex-valued,cdim
is ignored. IfX
is real-valued andcdim
is integer thenX
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),X
will be treated as real-valuedkeepdim (bool, optional) – keep dimensions? (include complex dim, defalut is
False
) (only work when the dimension atcdim
equals 2)
- Returns:
the inputs’s imaginary part tensor.
- Return type:
tensor
Examples
th.manual_seed(2020) X = th.rand((2, 3, 3)) print('---imag') print(imag(X, cdim=0)) print(imag(X[0] + 1j * X[1])) # ---output ---imag tensor([[0.6307, 0.5403, 0.8033], [0.7781, 0.4966, 0.8888], [0.5570, 0.7127, 0.0339]]) tensor([[0.6307, 0.5403, 0.8033], [0.7781, 0.4966, 0.8888], [0.5570, 0.7127, 0.0339]])
- torchbox.base.mathops.mag2db(mag, s=20.0)
Converts decibel values to magnitudes
\[{\rm db} = s*{\rm log10}{\rm mag} \]
- torchbox.base.mathops.matmul(A, B, cdim=None, dim=(-2, -1))
Complex matrix multiplication
like A * B in matlab
- Parameters:
A (Tensor) – any size tensor, both complex and real representation are supported. For real representation, the real and imaginary dimension is specified by
cdim
orcaxis
.B (Tensor) – any size tensor, both complex and real representation are supported. For real representation, the real and imaginary dimension is specified by
cdim
orcaxis
.cdim (int or None, optional) – if
A
andB
are complex tensors but represented in real format,cdim
orcaxis
should be specified (Default isNone
).dim (tulpe or list) – dimensions for multiplication (default is (-2, -1))
- Returns:
result of complex multiplication with the same repesentation as
A
andB
.- Return type:
tensor
Examples
th.manual_seed(2020) Ar = th.randn((3, 3, 2)) Br = th.randn((3, 3, 2)) Ac = th.view_as_complex(Ar) Bc = th.view_as_complex(Br) print(th.sum(th.matmul(Ac, Bc) - matmul(Ac, Bc))) Mr = matmul(Ar, Br, cdim=-1, dim=( 0, 1)) Mc = th.view_as_real(th.matmul(Ac, Bc)) print(th.sum(Mr - Mc)) # output tensor(0.+0.j) tensor(1.0729e-06)
- torchbox.base.mathops.mean(X, cdim=None, dim=None, keepdim=False)
- Parameters:
X (Tensor) – the input tensor
cdim (int or None) – If
X
is complex-valued,cdim
is ignored. IfX
is real-valued andcdim
is integer thenX
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),X
will be treated as real-valueddim (int, list or None, optional) – the dimensions for calculation, by default None (all dims)
keepdim (bool, optional) – keep dimensions? (include complex dim, defalut is
False
)
Examples
th.manual_seed(2020) X = th.rand((2, 3, 3)) print(mean(X)) # real print(mean(X, cdim=0)) # complex in real print(mean(X[0] + 1j * X[1])) # complex in complex
- torchbox.base.mathops.nextpow2(x)
get the next higher power of 2.
Given an number \(x\), returns the first p such that \(2^p >=|x|\).
Examples
print(prevpow2(-5), nextpow2(-5)) print(prevpow2(5), nextpow2(5)) print(prevpow2(0.3), nextpow2(0.3)) print(prevpow2(7.3), nextpow2(7.3)) print(prevpow2(-3.5), nextpow2(-3.5)) # output 2 3 2 3 -2 -1 2 3 1 2
- torchbox.base.mathops.pow(X, cdim=None, keepdim=False)
obtain power of a tensor
Both complex and real representation are supported.
\[{\rm pow}({\bf X}) = |x|^2 = u^2 + v^2, x\in {\bf X} \]where, \(u, v\) are the real and imaginary part of x, respectively.
- Parameters:
X (Tensor) – input
cdim (int or None) – If
X
is complex-valued,cdim
is ignored. IfX
is real-valued andcdim
is integer thenX
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),X
will be treated as real-valuedkeepdim (bool, optional) – keep dimensions? (include complex dim, defalut is
False
) (only work when the dimension atcdim
equals 2)
- Returns:
the inputs’s power.
- Return type:
tensor
Examples
th.manual_seed(2020) X = th.rand((2, 3, 3)) print('---pow') print(pow(X)) # real print(pow(X, cdim=0)) # complex in real print(pow(X[0] + 1j * X[1])) # complex in complex # ---output ---pow tensor([[0.6349, 0.3030, 0.9914], [0.6190, 0.4915, 0.8697], [0.6583, 1.1649, 0.0643]]) tensor([[0.6349, 0.3030, 0.9914], [0.6190, 0.4915, 0.8697], [0.6583, 1.1649, 0.0643]])
- torchbox.base.mathops.prevpow2(x)
get the previous lower power of 2.
Given an number \(x\), returns the first p such that \(2^p <=|x|\).
Examples
print(prevpow2(-5), nextpow2(-5)) print(prevpow2(5), nextpow2(5)) print(prevpow2(0.3), nextpow2(0.3)) print(prevpow2(7.3), nextpow2(7.3)) print(prevpow2(-3.5), nextpow2(-3.5)) # output 2 3 2 3 -2 -1 2 3 1 2
- torchbox.base.mathops.r2c(X, cdim=-1, keepdim=False)
real representaion to complex representaion
- Parameters:
- Returns:
tensor – output in complex representaion
see also
c2r()
Examples
th.manual_seed(2020) Xr = th.randint(0, 30, (3, 3, 2)) Xc = Xr[..., 0] + 1j * Xr[..., 1] Yr = c2r(Xc, cdim=0) Yc = r2c(Yr, cdim=0) print(Xr, Xr.shape, 'Xr') print(Xc, Xc.shape, 'Xc') print(Yr, Yr.shape, 'Yr') print(Yc, Yc.shape, 'Yc') # ---output tensor([[[20, 6], [27, 12], [25, 21]], [[21, 19], [29, 24], [25, 10]], [[16, 14], [ 6, 9], [ 5, 29]]]) torch.Size([3, 3, 2]) Xr tensor([[20.+6.j, 27.+12.j, 25.+21.j], [21.+19.j, 29.+24.j, 25.+10.j], [16.+14.j, 6.+9.j, 5.+29.j]]) torch.Size([3, 3]) Xc tensor([[[20., 27., 25.], [21., 29., 25.], [16., 6., 5.]], [[ 6., 12., 21.], [19., 24., 10.], [14., 9., 29.]]]) torch.Size([2, 3, 3]) Yr tensor([[20.+6.j, 27.+12.j, 25.+21.j], [21.+19.j, 29.+24.j, 25.+10.j], [16.+14.j, 6.+9.j, 5.+29.j]]) torch.Size([3, 3]) Yc
- torchbox.base.mathops.real(X, cdim=None, keepdim=False)
obtain real part of a tensor
Both complex and real representation are supported.
- Parameters:
X (Tensor) – input
cdim (int or None) – If
X
is complex-valued,cdim
is ignored. IfX
is real-valued andcdim
is integer thenX
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),X
will be treated as real-valuedkeepdim (bool, optional) – keep dimensions? (include complex dim, defalut is
False
) (only work when the dimension atcdim
equals 2)
- Returns:
the inputs’s real part tensor.
- Return type:
tensor
Examples
th.manual_seed(2020) X = th.rand((2, 3, 3)) print('---real') print(real(X, cdim=0)) print(real(X[0] + 1j * X[1])) # ---output ---real tensor([[0.4869, 0.1052, 0.5883], [0.1161, 0.4949, 0.2824], [0.5899, 0.8105, 0.2512]]) tensor([[0.4869, 0.1052, 0.5883], [0.1161, 0.4949, 0.2824], [0.5899, 0.8105, 0.2512]])
- torchbox.base.mathops.sinc(x)
Applies sinc function to a tensor
- Parameters:
x (Tensor) – input tensor
- Returns:
after sinc transformation.
- Return type:
Tensor
- torchbox.base.mathops.std(X, biased=False, cdim=None, dim=None, keepdim=False)
Calculates the standard deviation over the specified dimensions
- Parameters:
X (Tensor) – the input tensor
biased (bool, optional) –
True
for N,False
for N-1, by defaultFalse
cdim (int or None) – If
X
is complex-valued,cdim
is ignored. IfX
is real-valued andcdim
is integer thenX
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),X
will be treated as real-valueddim (int, list or None, optional) – the dimensions for calculation, by default None (all dims)
keepdim (bool, optional) – keep dimensions? (include complex dim, defalut is
False
)
- Returns:
the result
- Return type:
tensor
Examples
th.manual_seed(2020) X = th.rand((2, 3, 3)) print(std(X)) # real print(std(X, cdim=0)) # complex in real print(std(X[0] + 1j * X[1])) # complex in complex
- torchbox.base.mathops.var(X, biased=False, cdim=None, dim=None, keepdim=False)
Calculates the variance over the specified dimensions
\[\sigma^2=\frac{1}{N-\delta} \sum_{i=0}^{N-1}\left(x_i-\bar{x}\right)^2 \]where \(\delta = 0\) for biased estimation, \(\delta = 1\) for unbiased estimation.
- Parameters:
X (Tensor) – the input tensor
biased (bool, optional) –
True
for N,False
for N-1, by defaultFalse
cdim (int or None) – If
X
is complex-valued,cdim
is ignored. IfX
is real-valued andcdim
is integer thenX
will be treated as complex-valued, in this case,cdim
specifies the complex axis; otherwise (None),X
will be treated as real-valueddim (int, list or None, optional) – the dimensions for calculation, by default None (all dims)
keepdim (bool, optional) – keep dimensions? (include complex dim, defalut is
False
)
- Returns:
the result
- Return type:
tensor
Examples
th.manual_seed(2020) X = th.rand((2, 3, 3)) print(var(X)) # real print(var(X, cdim=0)) # complex in real print(var(X[0] + 1j * X[1])) # complex in complex
torchbox.base.randomfunc module
- torchbox.base.randomfunc.permutation(x)
permutation function like numpy.random.permutation
permutation function like numpy.random.permutation
- Parameters:
x (Tensor) – inputs, can have any dimensions.
- Returns:
x – permutated tensor
- Return type:
Tensor
- torchbox.base.randomfunc.randgrid(start, stop, step, shake=0, n=None)
generates non-repeated uniform stepped random ints
Generates
n
non-repeated random ints fromstart
tostop
with step sizestep
.When step is 1 and shake is 0, it works similar to randperm,
- Parameters:
- Return type:
for multi-dimension, return a 2-d tensor, for 1-dimension, return a 1d-tensor.
Example
import matplotlib.pyplot as plt setseed(2021) print(randperm(2, 40, 8), ", randperm(2, 40, 8)") print(randgrid(2, 40, 1, -1., 8), ", randgrid(2, 40, 1, 8, -1.)") print(randgrid(2, 40, 6, -1, 8), ", randgrid(2, 40, 6, 8)") print(randgrid(2, 40, 6, 0.5, 8), ", randgrid(2, 40, 6, 8, 0.5)") print(randgrid(2, 40, 6, -1, 12), ", randgrid(2, 40, 6, 12)") print(randgrid(2, 40, 6, 0.5, 12), ", randgrid(2, 40, 6, 12, 0.5)") mask = th.zeros((5, 6)) mask[3, 4] = 0 mask[2, 5] = 0 Rh, Rw = randperm2d(5, 6, 4, mask=mask) print(Rh) print(Rw) y = randperm(0, 8192, 800) x = randperm(0, 8192, 800) y, x = randgrid([0, 0], [512, 512], [64, 64], [0.0, 0.], 32) print(len(y), len(x)) plt.figure() plt.plot(x, y, 'o') plt.show() y, x = randgrid([0, 0], [8192, 8192], [256, 256], [0., 0.], 400) print(len(y), len(x)) plt.figure() plt.plot(x, y, '*') plt.show()
see also
randperm()
.
- torchbox.base.randomfunc.randperm(start, stop, n)
randperm function like matlab
genarates diffrent random interges in range [start, stop)
- Parameters:
:param see also
randgrid()
.:
- torchbox.base.randomfunc.randperm2d(H, W, number, population=None, mask=None)
randperm 2d function
genarates diffrent random interges in range [start, end)
- torchbox.base.randomfunc.setseed(seed=None, target='torch')
set seed
Set numpy / random / torch / torch.random / torch.cuda seed.
- Parameters:
seed (int or None, optional) – seed for random number generator (the default is None)
target (str, optional) –
'numpy'
:np.random.seed(seed)
'random'
:random.seed(seed)
'torch'
:torch.manual_seed(seed)
(default)'torch.random'
:torch.random.manual_seed(seed)
'cuda'
:torch.cuda.manual_seed(seed)
'cudaall'
:torch.cuda.manual_seed_all(seed)
torchbox.base.typevalue module
- torchbox.base.typevalue.dtypes(t='int')
- torchbox.base.typevalue.peakvalue(A)
Compute the peak value of the input.
Find peak value in matrix
- Parameters:
A (numpy array) – Data for finding peak value
- Returns:
Peak value.
- Return type:
number