torchlib.module.evaluation package¶
Submodules¶
torchlib.module.evaluation.contrast module¶
- class torchlib.module.evaluation.contrast.Contrast(cdim=None, dim=None, mode='way1', reduction='mean')¶
Bases:
torch.nn.modules.module.Moduleway1 is defined as follows, see [1]:
\[C = \frac{\sqrt{{\rm E}\left(|I|^2 - {\rm E}(|I|^2)\right)^2}}{{\rm E}(|I|^2)} \]way2 is defined as follows, see [2]:
\[C = \frac{{\rm E}(|I|^2)}{\left({\rm E}(|I|)\right)^2} \][1] Efficient Nonparametric ISAR Autofocus Algorithm Based on Contrast Maximization and Newton [2] section 13.4.1 in “Ian G. Cumming’s SAR book”
- Parameters
X (torch tensor) – The image tensor.
cdim (int or None) – If
Xis complex-valued,cdimis ignored. IfXis real-valued andcdimis integer thenXwill be treated as complex-valued, in this case,cdimspecifies the complex axis; otherwise (None),Xwill be treated as real-valueddim (tuple, None, optional) – The dimension axis (
cdimis not included) for computing contrast. The default isNone, which means all.mode (str, optional) –
'way1'or'way2'reduction (str, optional) – The operation in batch dim,
'None','mean'or'sum'(the default is ‘mean’)
- Returns
C – The contrast value of input.
- Return type
scalar or tensor
Examples
th.manual_seed(2020) X = th.randn(5, 2, 3, 4) # real C1 = Contrast(cdim=None, dim=(-2, -1), mode='way1', reduction=None)(X) C2 = Contrast(cdim=None, dim=(-2, -1), mode='way1', reduction='sum')(X) C3 = Contrast(cdim=None, dim=(-2, -1), mode='way1', reduction='mean')(X) print(C1, C2, C3) # complex in real format C1 = Contrast(cdim=1, dim=(-2, -1), mode='way1', reduction=None)(X) C2 = Contrast(cdim=1, dim=(-2, -1), mode='way1', reduction='sum')(X) C3 = Contrast(cdim=1, dim=(-2, -1), mode='way1', reduction='mean')(X) print(C1, C2, C3) # complex in complex format X = X[:, 0, ...] + 1j * X[:, 1, ...] C1 = Contrast(cdim=None, dim=(-2, -1), mode='way1', reduction=None)(X) C2 = Contrast(cdim=None, dim=(-2, -1), mode='way1', reduction='sum')(X) C3 = Contrast(cdim=None, dim=(-2, -1), mode='way1', reduction='mean')(X) print(C1, C2, C3) # output tensor([[1.2612, 1.1085], [1.5992, 1.2124], [0.8201, 0.9887], [1.4376, 1.0091], [1.1397, 1.1860]]) tensor(11.7626) tensor(1.1763) tensor([0.6321, 1.1808, 0.5884, 1.1346, 0.6038]) tensor(4.1396) tensor(0.8279) tensor([0.6321, 1.1808, 0.5884, 1.1346, 0.6038]) tensor(4.1396) tensor(0.8279)
- forward(X)¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
torchlib.module.evaluation.entropy module¶
- class torchlib.module.evaluation.entropy.Entropy(cdim=None, dim=None, mode='shannon', reduction='mean')¶
Bases:
torch.nn.modules.module.Modulecompute the entropy of the inputs
\[{\rm S} = -\sum_{n=0}^N p_i{\rm log}_2 p_n \]where \(N\) is the number of pixels, \(p_n=\frac{|X_n|^2}{\sum_{n=0}^N|X_n|^2}\).
- Parameters
X (tensor) – The complex or real inputs, for complex inputs, both complex and real representations are surpported.
cdim (int or None) – If
Xis complex-valued,caxisis ignored. IfXis real-valued andcaxisis integer thenXwill be treated as complex-valued, in this case,caxisspecifies the complex axis; otherwise (None),Xwill be treated as real-valueddim (tuple, None, optional) – The dimension axis (
caxisis not included) for computing entropy. The default isNone, which means all.mode (str, optional) – The entropy mode:
'shannon'or'natural'(the default is ‘shannon’)reduction (str, optional) – The operation in batch dim,
'None','mean'or'sum'(the default is ‘mean’)
- Returns
S – The entropy of the inputs.
- Return type
tensor
Examples
th.manual_seed(2020) X = th.randn(5, 2, 3, 4) # real S1 = Entropy(cdim=None, dim=(-2, -1), mode='shannon', reduction=None)(X) S2 = Entropy(cdim=None, dim=(-2, -1), mode='shannon', reduction='sum')(X) S3 = Entropy(cdim=None, dim=(-2, -1), mode='shannon', reduction='mean')(X) print(S1, S2, S3) # complex in real format S1 = Entropy(cdim=1, dim=(-2, -1), mode='shannon', reduction=None)(X) S2 = Entropy(cdim=1, dim=(-2, -1), mode='shannon', reduction='sum')(X) S3 = Entropy(cdim=1, dim=(-2, -1), mode='shannon', reduction='mean')(X) print(S1, S2, S3) # complex in complex format X = X[:, 0, ...] + 1j * X[:, 1, ...] S1 = Entropy(cdim=None, dim=(-2, -1), mode='shannon', reduction=None)(X) S2 = Entropy(cdim=None, dim=(-2, -1), mode='shannon', reduction='sum')(X) S3 = Entropy(cdim=None, dim=(-2, -1), mode='shannon', reduction='mean')(X) print(S1, S2, S3) # output tensor([[2.5482, 2.7150], [2.0556, 2.6142], [2.9837, 2.9511], [2.4296, 2.7979], [2.7287, 2.5560]]) tensor(26.3800) tensor(2.6380) tensor([3.2738, 2.5613, 3.2911, 2.7989, 3.2789]) tensor(15.2040) tensor(3.0408) tensor([3.2738, 2.5613, 3.2911, 2.7989, 3.2789]) tensor(15.2040) tensor(3.0408)
- forward(X)¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
torchlib.module.evaluation.error module¶
- class torchlib.module.evaluation.error.MAE(cdim=None, dim=None, norm=False, reduction='mean')¶
Bases:
torch.nn.modules.module.Modulecomputes the mean absoluted error
Both complex and real representation are supported.
\[{\rm MAE}({\bf X, Y}) = \frac{1}{N}\||{\bf X} - {\bf Y}|\| = \frac{1}{N}\sum_{i=1}^N |x_i - y_i| \]- Parameters
X (array) – original
X – reconstructed
cdim (int or None) – If
Xis complex-valued,cdimis ignored. IfXis real-valued andcdimis integer thenXwill be treated as complex-valued, in this case,cdimspecifies the complex axis; otherwise (None),Xwill be treated as real-valueddim (int or None) – The dimension axis (
cdimis not included) for computing norm. The default isNone, which means all.norm (bool) – If
True, normalize with the f-norm ofXandY. (default isFalse)reduction (str, optional) – The operation in batch dim,
None,'mean'or'sum'(the default is'mean')
- Returns
mean absoluted error
- Return type
scalar or array
Examples
norm = False th.manual_seed(2020) X = th.randn(5, 2, 3, 4) Y = th.randn(5, 2, 3, 4) # real C1 = MAE(cdim=None, dim=(-2, -1), norm=norm, reduction=None)(X, Y) C2 = MAE(cdim=None, dim=(-2, -1), norm=norm, reduction='sum')(X, Y) C3 = MAE(cdim=None, dim=(-2, -1), norm=norm, reduction='mean')(X, Y) print(C1, C2, C3) # complex in real format C1 = MAE(cdim=1, dim=(-2, -1), norm=norm, reduction=None)(X, Y) C2 = MAE(cdim=1, dim=(-2, -1), norm=norm, reduction='sum')(X, Y) C3 = MAE(cdim=1, dim=(-2, -1), norm=norm, reduction='mean')(X, Y) print(C1, C2, C3) # complex in complex format X = X[:, 0, ...] + 1j * X[:, 1, ...] Y = Y[:, 0, ...] + 1j * Y[:, 1, ...] C1 = MAE(cdim=None, dim=(-2, -1), norm=norm, reduction=None)(X, Y) C2 = MAE(cdim=None, dim=(-2, -1), norm=norm, reduction='sum')(X, Y) C3 = MAE(cdim=None, dim=(-2, -1), norm=norm, reduction='mean')(X, Y) print(C1, C2, C3) # ---output [[1.06029116 1.19884877] [0.90117091 1.13552361] [1.23422083 0.75743914] [1.16127965 1.42169262] [1.25090731 1.29134222]] 11.41271620974502 1.141271620974502 [1.71298566 1.50327364 1.53328572 2.11430946 2.01435599] 8.878210471231741 1.7756420942463482 [1.71298566 1.50327364 1.53328572 2.11430946 2.01435599] 8.878210471231741 1.7756420942463482
- forward(P, G)¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class torchlib.module.evaluation.error.MSE(cdim=None, dim=None, norm=False, reduction='mean')¶
Bases:
torch.nn.modules.module.Modulecomputes the mean square error
Both complex and real representation are supported.
\[{\rm MSE}({\bf X, Y}) = \frac{1}{N}\|{\bf X} - {\bf Y}\|_2^2 = \frac{1}{N}\sum_{i=1}^N(|x_i - y_i|)^2 \]- Parameters
X (array) – reconstructed
Y (array) – target
cdim (int or None) – If
Xis complex-valued,cdimis ignored. IfXis real-valued andcdimis integer thenXwill be treated as complex-valued, in this case,cdimspecifies the complex axis; otherwise (None),Xwill be treated as real-valueddim (int or None) – The dimension axis (
cdimis not included) for computing norm. The default isNone, which means all.norm (bool) – If
True, normalize with the f-norm ofXandY. (default isFalse)reduction (str, optional) – The operation in batch dim,
None,'mean'or'sum'(the default is'mean')
- Returns
mean square error
- Return type
scalar or array
Examples
norm = False th.manual_seed(2020) X = th.randn(5, 2, 3, 4) Y = th.randn(5, 2, 3, 4) # real C1 = MSE(cdim=None, dim=(-2, -1), norm=norm, reduction=None)(X, Y) C2 = MSE(cdim=None, dim=(-2, -1), norm=norm, reduction='sum')(X, Y) C3 = MSE(cdim=None, dim=(-2, -1), norm=norm, reduction='mean')(X, Y) print(C1, C2, C3) # complex in real format C1 = MSE(cdim=1, dim=(-2, -1), norm=norm, reduction=None)(X, Y) C2 = MSE(cdim=1, dim=(-2, -1), norm=norm, reduction='sum')(X, Y) C3 = MSE(cdim=1, dim=(-2, -1), norm=norm, reduction='mean')(X, Y) print(C1, C2, C3) # complex in complex format X = X[:, 0, ...] + 1j * X[:, 1, ...] Y = Y[:, 0, ...] + 1j * Y[:, 1, ...] C1 = MSE(cdim=None, dim=(-2, -1), norm=norm, reduction=None)(X, Y) C2 = MSE(cdim=None, dim=(-2, -1), norm=norm, reduction='sum')(X, Y) C3 = MSE(cdim=None, dim=(-2, -1), norm=norm, reduction='mean')(X, Y) print(C1, C2, C3) # ---output [[1.57602573 2.32844311] [1.07232374 2.36118382] [2.1841515 0.79002805] [2.43036295 3.18413899] [2.31107373 2.73990485]] 20.977636476183186 2.0977636476183186 [3.90446884 3.43350757 2.97417955 5.61450194 5.05097858] 20.977636476183186 4.195527295236637 [3.90446884 3.43350757 2.97417955 5.61450194 5.05097858] 20.977636476183186 4.195527295236637
- forward(P, G)¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class torchlib.module.evaluation.error.SAE(cdim=None, dim=None, norm=False, reduction='mean')¶
Bases:
torch.nn.modules.module.Modulecomputes the sum absoluted error
Both complex and real representation are supported.
\[{\rm SAE}({\bf X, Y}) = \||{\bf X} - {\bf Y}|\| = \sum_{i=1}^N |x_i - y_i| \]- Parameters
X (array) – original
X – reconstructed
cdim (int or None) – If
Xis complex-valued,cdimis ignored. IfXis real-valued andcdimis integer thenXwill be treated as complex-valued, in this case,cdimspecifies the complex axis; otherwise (None),Xwill be treated as real-valueddim (int or None) – The dimension axis (
cdimis not included) for computing norm. The default isNone, which means all.norm (bool) – If
True, normalize with the f-norm ofXandY. (default isFalse)reduction (str, optional) – The operation in batch dim,
None,'mean'or'sum'(the default is'mean')
- Returns
sum absoluted error
- Return type
scalar or array
Examples
norm = False th.manual_seed(2020) X = th.randn(5, 2, 3, 4) Y = th.randn(5, 2, 3, 4) # real C1 = SAE(cdim=None, dim=(-2, -1), norm=norm, reduction=None)(X, Y) C2 = SAE(cdim=None, dim=(-2, -1), norm=norm, reduction='sum')(X, Y) C3 = SAE(cdim=None, dim=(-2, -1), norm=norm, reduction='mean')(X, Y) print(C1, C2, C3) # complex in real format C1 = SAE(cdim=1, dim=(-2, -1), norm=norm, reduction=None)(X, Y) C2 = SAE(cdim=1, dim=(-2, -1), norm=norm, reduction='sum')(X, Y) C3 = SAE(cdim=1, dim=(-2, -1), norm=norm, reduction='mean')(X, Y) print(C1, C2, C3) # complex in complex format X = X[:, 0, ...] + 1j * X[:, 1, ...] Y = Y[:, 0, ...] + 1j * Y[:, 1, ...] C1 = SAE(cdim=None, dim=(-2, -1), norm=norm, reduction=None)(X, Y) C2 = SAE(cdim=None, dim=(-2, -1), norm=norm, reduction='sum')(X, Y) C3 = SAE(cdim=None, dim=(-2, -1), norm=norm, reduction='mean')(X, Y) print(C1, C2, C3) # ---output [[12.72349388 14.3861852 ] [10.81405096 13.62628335] [14.81065 9.08926963] [13.93535577 17.0603114 ] [15.0108877 15.49610662]] 136.95259451694022 13.695259451694023 [20.55582795 18.03928365 18.39942858 25.37171356 24.17227192] 106.53852565478087 21.307705130956172 [20.55582795 18.03928365 18.39942858 25.37171356 24.17227192] 106.5385256547809 21.30770513095618
- forward(P, G)¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class torchlib.module.evaluation.error.SSE(cdim=None, dim=None, norm=False, reduction='mean')¶
Bases:
torch.nn.modules.module.Modulecomputes the sum square error
Both complex and real representation are supported.
\[{\rm SSE}({\bf X, Y}) = \|{\bf X} - {\bf Y}\|_2^2 = \sum_{i=1}^N(|x_i - y_i|)^2 \]- Parameters
X (array) – reconstructed
Y (array) – target
cdim (int or None) – If
Xis complex-valued,cdimis ignored. IfXis real-valued andcdimis integer thenXwill be treated as complex-valued, in this case,cdimspecifies the complex axis; otherwise (None),Xwill be treated as real-valueddim (int or None) – The dimension axis (
cdimis not included) for computing norm. The default isNone, which means all.norm (bool) – If
True, normalize with the f-norm ofXandY. (default isFalse)reduction (str, optional) – The operation in batch dim,
None,'mean'or'sum'(the default is'mean')
- Returns
sum square error
- Return type
scalar or array
Examples
norm = False th.manual_seed(2020) X = th.randn(5, 2, 3, 4) Y = th.randn(5, 2, 3, 4) # real C1 = SSE(cdim=None, dim=(-2, -1), norm=norm, reduction=None)(X, Y) C2 = SSE(cdim=None, dim=(-2, -1), norm=norm, reduction='sum')(X, Y) C3 = SSE(cdim=None, dim=(-2, -1), norm=norm, reduction='mean')(X, Y) print(C1, C2, C3) # complex in real format C1 = SSE(cdim=1, dim=(-2, -1), norm=norm, reduction=None)(X, Y) C2 = SSE(cdim=1, dim=(-2, -1), norm=norm, reduction='sum')(X, Y) C3 = SSE(cdim=1, dim=(-2, -1), norm=norm, reduction='mean')(X, Y) print(C1, C2, C3) # complex in complex format X = X[:, 0, ...] + 1j * X[:, 1, ...] Y = Y[:, 0, ...] + 1j * Y[:, 1, ...] C1 = SSE(cdim=None, dim=(-2, -1), norm=norm, reduction=None)(X, Y) C2 = SSE(cdim=None, dim=(-2, -1), norm=norm, reduction='sum')(X, Y) C3 = SSE(cdim=None, dim=(-2, -1), norm=norm, reduction='mean')(X, Y) print(C1, C2, C3) # ---output [[18.91230872 27.94131733] [12.86788492 28.33420589] [26.209818 9.48033663] [29.16435541 38.20966786] [27.73288477 32.87885818]] 251.73163771419823 25.173163771419823 [46.85362605 41.20209081 35.69015462 67.37402327 60.61174295] 251.73163771419823 50.346327542839646 [46.85362605 41.20209081 35.69015462 67.37402327 60.61174295] 251.73163771419823 50.346327542839646
- forward(P, G)¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
torchlib.module.evaluation.norm module¶
- class torchlib.module.evaluation.norm.Fnorm(cdim=None, dim=None, reduction='mean')¶
Bases:
torch.nn.modules.module.Moduleobtain the f-norm of a tensor
Both complex and real representation are supported.
\[{\rm norm}({\bf X}) = \|{\bf X}\|_2 = \left(\sum_{x_i\in {\bf X}}|x_i|^2\right)^{\frac{1}{2}} \]where, \(u, v\) are the real and imaginary part of x, respectively.
- Parameters
X (tensor) – input
cdim (int or None) – If
Xis complex-valued,cdimis ignored. IfXis real-valued andcdimis integer thenXwill be treated as complex-valued, in this case,cdimspecifies the complex axis; otherwise (None),Xwill be treated as real-valueddim (int or None) – The dimension axis (
cdimis not included) for computing norm. The default isNone, which means all.reduction (str, None or optional) – The operation in batch dim,
None,'mean'or'sum'(the default is ‘mean’)
- Returns
the inputs’s f-norm.
- Return type
tensor
Examples
th.manual_seed(2020) X = th.randn(5, 2, 3, 4) print('---norm') # real F1 = Fnorm(cdim=None, dim=(-2, -1), reduction=None)(X) F2 = Fnorm(cdim=None, dim=(-2, -1), reduction='sum')(X) F3 = Fnorm(cdim=None, dim=(-2, -1), reduction='mean')(X) print(F1, F2, F3) # complex in real format F1 = Fnorm(cdim=1, dim=(-2, -1), reduction=None)(X) F2 = Fnorm(cdim=1, dim=(-2, -1), reduction='sum')(X) F3 = Fnorm(cdim=1, dim=(-2, -1), reduction='mean')(X) print(F1, F2, F3) # complex in complex format X = X[:, 0, ...] + 1j * X[:, 1, ...] F1 = Fnorm(cdim=None, dim=(-2, -1), reduction=None)(X) F2 = Fnorm(cdim=None, dim=(-2, -1), reduction='sum')(X) F3 = Fnorm(cdim=None, dim=(-2, -1), reduction='mean')(X) print(F1, F2, F3) ---norm tensor([[2.8719, 2.8263], [3.1785, 3.4701], [4.6697, 3.2955], [3.0992, 2.6447], [3.5341, 3.5779]]) tensor(33.1679) tensor(3.3168) tensor([4.0294, 4.7058, 5.7154, 4.0743, 5.0290]) tensor(23.5539) tensor(4.7108) tensor([4.0294, 4.7058, 5.7154, 4.0743, 5.0290]) tensor(23.5539) tensor(4.7108)
- forward(X)¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class torchlib.module.evaluation.norm.Pnorm(cdim=None, dim=None, p=2, reduction='mean')¶
Bases:
torch.nn.modules.module.Moduleobtain the p-norm of a tensor
Both complex and real representation are supported.
\[{\rm pnorm}({\bf X}) = \|{\bf X}\|_p = \left(\sum_{x_i\in {\bf X}}|x_i|^p\right)^{\frac{1}{p}} \]where, \(u, v\) are the real and imaginary part of x, respectively.
- Parameters
X (tensor) – input
cdim (int or None) – If
Xis complex-valued,cdimis ignored. IfXis real-valued andcdimis integer thenXwill be treated as complex-valued, in this case,cdimspecifies the complex axis; otherwise (None),Xwill be treated as real-valueddim (int or None) – The dimension axis (
cdimis not included) for computing norm. The default isNone, which means all.p (int) – Specifies the power. The default is 2.
- Returns
the inputs’s p-norm.
- Return type
tensor
Examples
th.manual_seed(2020) X = th.randn(5, 2, 3, 4) print('---pnorm') # real F1 = Pnorm(cdim=None, dim=(-2, -1), reduction=None)(X) F2 = Pnorm(cdim=None, dim=(-2, -1), reduction='sum')(X) F3 = Pnorm(cdim=None, dim=(-2, -1), reduction='mean')(X) print(F1, F2, F3) # complex in real format F1 = Pnorm(cdim=1, dim=(-2, -1), reduction=None)(X) F2 = Pnorm(cdim=1, dim=(-2, -1), reduction='sum')(X) F3 = Pnorm(cdim=1, dim=(-2, -1), reduction='mean')(X) print(F1, F2, F3) # complex in complex format X = X[:, 0, ...] + 1j * X[:, 1, ...] F1 = Pnorm(cdim=None, dim=(-2, -1), reduction=None)(X) F2 = Pnorm(cdim=None, dim=(-2, -1), reduction='sum')(X) F3 = Pnorm(cdim=None, dim=(-2, -1), reduction='mean')(X) print(F1, F2, F3) ---pnorm tensor([[2.8719, 2.8263], [3.1785, 3.4701], [4.6697, 3.2955], [3.0992, 2.6447], [3.5341, 3.5779]]) tensor(33.1679) tensor(3.3168) tensor([4.0294, 4.7058, 5.7154, 4.0743, 5.0290]) tensor(23.5539) tensor(4.7108) tensor([4.0294, 4.7058, 5.7154, 4.0743, 5.0290]) tensor(23.5539) tensor(4.7108)
- forward(X)¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
torchlib.module.evaluation.retrieval module¶
- class torchlib.module.evaluation.retrieval.Dice(size_average=True, reduce=True)¶
Bases:
torch.nn.modules.module.Module- soft_dice_coeff(P, G)¶
- class torchlib.module.evaluation.retrieval.F1(size_average=True, reduce=True)¶
Bases:
torch.nn.modules.module.ModuleF1 distance
(1)¶\[F_{\beta} = 1 -\frac{(1+\beta^2) P R}{\beta^2 P + R} \]where,
(2)¶\[{\rm PPV} = {P} = \frac{\rm TP}{{\rm TP} + {\rm FP}} \](3)¶\[{\rm TPR} = {R} = \frac{\rm TP}{{\rm TP} + {\rm FN}} \]- forward(P, G)¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class torchlib.module.evaluation.retrieval.Iridescent(size_average=True, reduce=True)¶
Bases:
torch.nn.modules.module.ModuleIridescent Distance
\[d_{J}({\mathbb A}, {\mathbb B})=1-J({\mathbb A}, {\mathbb B})=\frac{|{\mathbb A} \cup {\mathbb B}|-|{\mathbb A} \cap {\mathbb B}|}{|{\mathbb A} \cup {\mathbb B}|} \]- forward(P, G)¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class torchlib.module.evaluation.retrieval.Jaccard(size_average=True, reduce=True)¶
Bases:
torch.nn.modules.module.ModuleJaccard distance
\[d_{J}({\mathbb A}, {\mathbb B})=1-J({\mathbb A}, {\mathbb B})=\frac{|{\mathbb A} \cup {\mathbb B}|-|{\mathbb A} \cap {\mathbb B}|}{|{\mathbb A} \cup {\mathbb B}|} \]- forward(P, G)¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
torchlib.module.evaluation.ssims module¶
- class torchlib.module.evaluation.ssims.MSSSIM(data_range=255, size_average=True, win_size=11, win_sigma=1.5, channel=3, spatial_dims=2, weights=None, K=(0.01, 0.03))¶
Bases:
torch.nn.modules.module.Module- forward(X, Y)¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
- class torchlib.module.evaluation.ssims.SSIM(data_range=255, size_average=True, win_size=11, win_sigma=1.5, channel=3, spatial_dims=2, K=(0.01, 0.03), nonnegative_ssim=False)¶
Bases:
torch.nn.modules.module.Module- forward(X, Y)¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.
torchlib.module.evaluation.variation module¶
- class torchlib.module.evaluation.variation.TotalVariation(axis=0, reduction='mean')¶
Bases:
torch.nn.modules.module.ModuleTotal Variarion
- # https://www.wikiwand.com/en/Total_variation_denoising
diff_i = torch.sum(torch.abs(y_hat[:, :, :, 1:] - y_hat[:, :, :, :-1])) diff_j = torch.sum(torch.abs(y_hat[:, :, 1:, :] - y_hat[:, :, :-1, :])) tv_loss = TV_WEIGHT*(diff_i + diff_j)
- forward(X)¶
Defines the computation performed at every call.
Should be overridden by all subclasses.
Note
Although the recipe for forward pass needs to be defined within this function, one should call the
Moduleinstance afterwards instead of this since the former takes care of running the registered hooks while the latter silently ignores them.