tifffile package¶
Submodules¶
tifffile.lsm2bin module¶
Convert TZCYX LSM file to series of BIN files.
Usage: lsm2bin lsm_filename [bin_filename]
-
tifffile.lsm2bin.
main
(argv=None)¶ Lsm2bin command line usage main function.
tifffile.tifffile module¶
Read and write TIFF(r) files.
Tifffile is a Python library to
store numpy arrays in TIFF (Tagged Image File Format) files, and
read image and metadata from TIFF-like files used in bioimaging.
Image and metadata can be read from TIFF, BigTIFF, OME-TIFF, STK, LSM, SGI, NIHImage, ImageJ, MicroManager, FluoView, ScanImage, SEQ, GEL, SVS, SCN, SIS, ZIF, QPI, NDPI, and GeoTIFF files.
Numpy arrays can be written to TIFF, BigTIFF, and ImageJ hyperstack compatible files in multi-page, memory-mappable, tiled, predicted, or compressed form.
Only a subset of the TIFF specification is supported, mainly uncompressed and losslessly compressed 1, 8, 16, 32 and 64-bit integer, 16, 32 and 64-bit float, grayscale and RGB(A) images. Specifically, reading slices of image data, CCITT and OJPEG compression, chroma subsampling without JPEG compression, or IPTC and XMP metadata are not implemented.
TIFF(r), the Tagged Image File Format, is a trademark and under control of Adobe Systems Incorporated. BigTIFF allows for files greater than 4 GB. STK, LSM, FluoView, SGI, SEQ, GEL, and OME-TIFF, are custom extensions defined by Molecular Devices (Universal Imaging Corporation), Carl Zeiss MicroImaging, Olympus, Silicon Graphics International, Media Cybernetics, Molecular Dynamics, and the Open Microscopy Environment consortium respectively.
For command line usage run python -m tifffile --help
- Author
- Organization
Laboratory for Fluorescence Dynamics, University of California, Irvine
- License
3-clause BSD
- Version
2019.7.26
Requirements¶
This release has been tested with the following requirements and dependencies (other versions may work):
Imagecodecs 2019.5.22 (optional; used for encoding and decoding LZW, JPEG, etc.)
Matplotlib 3.1 (optional; used for plotting)
Python 2.7 requires ‘futures’, ‘enum34’, and ‘pathlib’.
Revisions¶
- 2019.7.26
Pass 2869 tests. Fix infinite loop reading more than two tags of same code in IFD. Delay import of logging module.
- 2019.7.20
Fix OME-XML detection for files created by Imaris. Remove or replace assert statements.
- 2019.7.2
Do not write SampleFormat tag for unsigned data types. Write ByteCount tag values as SHORT or LONG if possible. Allow to specify axes in FileSequence pattern via group names. Add option to concurrently read FileSequence using threads. Derive TiffSequence from FileSequence. Use str(datetime.timedelta) to format Timer duration. Use perf_counter for Timer if possible.
- 2019.6.18
Fix reading planar RGB ImageJ files created by Bio-Formats. Fix reading single-file, multi-image OME-TIFF without UUID. Presume LSM stores uncompressed images contiguously per page. Reformat some complex expressions.
- 2019.5.30
Ignore invalid frames in OME-TIFF. Set default subsampling to (2, 2) for RGB JPEG compression. Fix reading and writing planar RGB JPEG compression. Replace buffered_read with FileHandle.read_segments. Include page or frame numbers in exceptions and warnings. Add Timer class.
- 2019.5.22
Add optional chroma subsampling for JPEG compression. Enable writing PNG, JPEG, JPEGXR, and JPEG2000 compression (WIP). Fix writing tiled images with WebP compression. Improve handling GeoTIFF sparse files.
- 2019.3.18
Fix regression decoding JPEG with RGB photometrics. Fix reading OME-TIFF files with corrupted but unused pages. Allow to load TiffFrame without specifying keyframe. Calculate virtual TiffFrames for non-BigTIFF ScanImage files > 2GB. Rename property is_chroma_subsampled to is_subsampled (breaking). Make more attributes and methods private (WIP).
- 2019.3.8
Fix MemoryError when RowsPerStrip > ImageLength. Fix SyntaxWarning on Python 3.8. Fail to decode JPEG to planar RGB (tentative). Separate public from private test files (WIP). Allow testing without data files or imagecodecs.
- 2019.2.22
Use imagecodecs-lite as a fallback for imagecodecs. Simplify reading numpy arrays from file. Use TiffFrames when reading arrays from page sequences. Support slices and iterators in TiffPageSeries sequence interface. Auto-detect uniform series. Use page hash to determine generic series. Turn off page cache (tentative). Pass through more parameters in imread. Discontinue movie parameter in imread and TiffFile (breaking). Discontinue bigsize parameter in imwrite (breaking). Raise TiffFileError in case of issues with TIFF structure. Return TiffFile.ome_metadata as XML (breaking). Ignore OME series when last dimensions are not stored in TIFF pages.
- 2019.2.10
Assemble IFDs in memory to speed-up writing on some slow media. Handle discontinued arguments fastij, multifile_close, and pages.
- 2019.1.30
Use black background in imshow. Do not write datetime tag by default (breaking). Fix OME-TIFF with SamplesPerPixel > 1. Allow 64-bit IFD offsets for NDPI (files > 4GB still not supported).
- 2019.1.4
Fix decoding deflate without imagecodecs.
- 2019.1.1
Update copyright year. Require imagecodecs >= 2018.12.16. Do not use JPEG tables from keyframe. Enable decoding large JPEG in NDPI. Decode some old-style JPEG. Reorder OME channel axis to match PlanarConfiguration storage. Return tiled images as contiguous arrays. Add decode_lzw proxy function for compatibility with old czifile module. Use dedicated logger.
- 2018.11.28
Make SubIFDs accessible as TiffPage.pages. Make parsing of TiffSequence axes pattern optional (breaking). Limit parsing of TiffSequence axes pattern to file names, not path names. Do not interpolate in imshow if image dimensions <= 512, else use bilinear. Use logging.warning instead of warnings.warn in many cases. Fix numpy FutureWarning for out == ‘memmap’. Adjust ZSTD and WebP compression to libtiff-4.0.10 (WIP). Decode old-style LZW with imagecodecs >= 2018.11.8. Remove TiffFile.qptiff_metadata (QPI metadata are per page). Do not use keyword arguments before variable positional arguments. Make either all or none return statements in a function return expression. Use pytest parametrize to generate tests. Replace test classes with functions.
- 2018.11.6
Rename imsave function to imwrite. Readd Python implementations of packints, delta, and bitorder codecs. Fix TiffFrame.compression AttributeError.
- 2018.10.18
Rename tiffile package to tifffile.
- 2018.10.10
Read ZIF, the Zoomable Image Format (WIP). Decode YCbCr JPEG as RGB (tentative). Improve restoration of incomplete tiles. Allow to write grayscale with extrasamples without specifying planarconfig. Enable decoding of PNG and JXR via imagecodecs. Deprecate 32-bit platforms (too many memory errors during tests).
- 2018.9.27
Read Olympus SIS (WIP). Allow to write non-BigTIFF files up to ~4 GB (fix). Fix parsing date and time fields in SEM metadata. Detect some circular IFD references. Enable WebP codecs via imagecodecs. Add option to read TiffSequence from ZIP containers. Remove TiffFile.isnative. Move TIFF struct format constants out of TiffFile namespace.
- 2018.8.31
Fix wrong TiffTag.valueoffset. Towards reading Hamamatsu NDPI (WIP). Enable PackBits compression of byte and bool arrays. Fix parsing NULL terminated CZ_SEM strings.
- 2018.8.24
Move tifffile.py and related modules into tiffile package. Move usage examples to module docstring. Enable multi-threading for compressed tiles and pages by default. Add option to concurrently decode image tiles using threads. Do not skip empty tiles (fix). Read JPEG and J2K compressed strips and tiles. Allow floating-point predictor on write. Add option to specify subfiletype on write. Depend on imagecodecs package instead of _tifffile, lzma, etc modules. Remove reverse_bitorder, unpack_ints, and decode functions. Use pytest instead of unittest.
- 2018.6.20
Save RGBA with unassociated extrasample by default (breaking). Add option to specify ExtraSamples values.
- 2018.6.17 (included with 0.15.1)
Towards reading JPEG and other compressions via imagecodecs package (WIP). Read SampleFormat VOID as UINT. Add function to validate TIFF using ‘jhove -m TIFF-hul’. Save bool arrays as bilevel TIFF. Accept pathlib.Path as filenames. Move ‘software’ argument from TiffWriter __init__ to save. Raise DOS limit to 16 TB. Lazy load LZMA and ZSTD compressors and decompressors. Add option to save IJMetadata tags. Return correct number of pages for truncated series (fix). Move EXIF tags to TIFF.TAG as per TIFF/EP standard.
- 2018.2.18
Always save RowsPerStrip and Resolution tags as required by TIFF standard. Do not use badly typed ImageDescription. Coherce bad ASCII string tags to bytes. Tuning of __str__ functions. Fix reading ‘undefined’ tag values. Read and write ZSTD compressed data. Use hexdump to print byte strings. Determine TIFF byte order from data dtype in imsave. Add option to specify RowsPerStrip for compressed strips. Allow memory-map of arrays with non-native byte order. Attempt to handle ScanImage <= 5.1 files. Restore TiffPageSeries.pages sequence interface. Use numpy.frombuffer instead of fromstring to read from binary data. Parse GeoTIFF metadata. Add option to apply horizontal differencing before compression. Towards reading PerkinElmer QPI (QPTIFF, no test files). Do not index out of bounds data in tifffile.c unpackbits and decodelzw.
- 2017.9.29
Many backward incompatible changes improving speed and resource usage: Add detail argument to __str__ function. Remove info functions. Fix potential issue correcting offsets of large LSM files with positions. Remove TiffFile sequence interface; use TiffFile.pages instead. Do not make tag values available as TiffPage attributes. Use str (not bytes) type for tag and metadata strings (WIP). Use documented standard tag and value names (WIP). Use enums for some documented TIFF tag values. Remove ‘memmap’ and ‘tmpfile’ options; use out=’memmap’ instead. Add option to specify output in asarray functions. Add option to concurrently decode pages using threads. Add TiffPage.asrgb function (WIP). Do not apply colormap in asarray. Remove ‘colormapped’, ‘rgbonly’, and ‘scale_mdgel’ options from asarray. Consolidate metadata in TiffFile _metadata functions. Remove non-tag metadata properties from TiffPage. Add function to convert LSM to tiled BIN files. Align image data in file. Make TiffPage.dtype a numpy.dtype. Add ‘ndim’ and ‘size’ properties to TiffPage and TiffPageSeries. Allow imsave to write non-BigTIFF files up to ~4 GB. Only read one page for shaped series if possible. Add memmap function to create memory-mapped array stored in TIFF file. Add option to save empty arrays to TIFF files. Add option to save truncated TIFF files. Allow single tile images to be saved contiguously. Add optional movie mode for files with uniform pages. Lazy load pages. Use lightweight TiffFrame for IFDs sharing properties with key TiffPage. Move module constants to ‘TIFF’ namespace (speed up module import). Remove ‘fastij’ option from TiffFile. Remove ‘pages’ parameter from TiffFile. Remove TIFFfile alias. Deprecate Python 2. Require enum34 and futures packages on Python 2.7. Remove Record class and return all metadata as dict instead. Add functions to parse STK, MetaSeries, ScanImage, SVS, Pilatus metadata. Read tags from EXIF and GPS IFDs. Use pformat for tag and metadata values. Fix reading some UIC tags. Do not modify input array in imshow (fix). Fix Python implementation of unpack_ints.
- 2017.5.23
Write correct number of SampleFormat values (fix). Use Adobe deflate code to write ZIP compressed files. Add option to pass tag values as packed binary data for writing. Defer tag validation to attribute access. Use property instead of lazyattr decorator for simple expressions.
- 2017.3.17
Write IFDs and tag values on word boundaries. Read ScanImage metadata. Remove is_rgb and is_indexed attributes from TiffFile. Create files used by doctests.
- 2017.1.12 (included with scikit-image 0.14.x)
Read Zeiss SEM metadata. Read OME-TIFF with invalid references to external files. Rewrite C LZW decoder (5x faster). Read corrupted LSM files missing EOI code in LZW stream.
- 2017.1.1
…
Refer to the CHANGES file for older revisions.
Notes
The API is not stable yet and might change between revisions.
Tested on little-endian platforms only.
Python 2.7 and 32-bit versions are deprecated.
Tifffile relies on the imagecodecs package for encoding and decoding LZW, JPEG, and other compressed images. The imagecodecs-lite package, which is easier to build, can be used for decoding LZW compressed images instead.
Several TIFF-like formats do not strictly adhere to the TIFF6 specification, some of which allow file or data sizes to exceed the 4 GB limit:
BigTIFF is identified by version number 43 and uses different file header, IFD, and tag structures with 64-bit offsets. It adds more data types. Tifffile can read and write BigTIFF files.
ImageJ hyperstacks store all image data, which may exceed 4 GB, contiguously after the first IFD. Files > 4 GB contain one IFD only. The size (shape and dtype) of the up to 6-dimensional image data can be determined from the ImageDescription tag of the first IFD, which is Latin-1 encoded. Tifffile can read and write ImageJ hyperstacks.
OME-TIFF stores up to 8-dimensional data in one or multiple TIFF of BigTIFF files. The 8-bit UTF-8 encoded OME-XML metadata found in the ImageDescription tag of the first IFD defines the position of TIFF IFDs in the high dimensional data. Tifffile can read OME-TIFF files, except when the OME-XML metadata is stored in a separate file.
LSM stores all IFDs below 4 GB but wraps around 32-bit StripOffsets. The StripOffsets of each series and position require separate unwrapping. The StripByteCounts tag contains the number of bytes for the uncompressed data. Tifffile can read large LSM files.
NDPI uses some 64-bit offsets in the file header, IFD, and tag structures and might require correcting 32-bit offsets found in tags. JPEG compressed tiles with dimensions > 65536 are not readable with libjpeg. Tifffile can read NDPI files < 4 GB and decompress large JPEG tiles using the imagecodecs library on Windows.
ScanImage optionally allows corrupt non-BigTIFF files > 2 GB. The values of StripOffsets and StripByteCounts can be recovered using the constant differences of the offsets of IFD and tag values throughout the file. Tifffile can read such files on Python 3 if the image data is stored contiguously in each page.
GeoTIFF sparse files allow strip or tile offsets and byte counts to be 0. Such segments are implicitly set to 0 or the NODATA value on reading. Tifffile can read GeoTIFF sparse files.
Other libraries for reading scientific TIFF files from Python:
PyMca.TiffIO.py (same as fabio.TiffIO)
Some libraries are using tifffile to write OME-TIFF files:
References
TIFF 6.0 Specification and Supplements. Adobe Systems Incorporated. https://www.adobe.io/open/standards/TIFF.html
TIFF File Format FAQ. https://www.awaresystems.be/imaging/tiff/faq.html
MetaMorph Stack (STK) Image File Format. http://mdc.custhelp.com/app/answers/detail/a_id/18862
Image File Format Description LSM 5/7 Release 6.0 (ZEN 2010). Carl Zeiss MicroImaging GmbH. BioSciences. May 10, 2011
The OME-TIFF format. https://docs.openmicroscopy.org/ome-model/5.6.4/ome-tiff/
UltraQuant(r) Version 6.0 for Windows Start-Up Guide. http://www.ultralum.com/images%20ultralum/pdf/UQStart%20Up%20Guide.pdf
Micro-Manager File Formats. https://micro-manager.org/wiki/Micro-Manager_File_Formats
Tags for TIFF and Related Specifications. Digital Preservation. https://www.loc.gov/preservation/digital/formats/content/tiff_tags.shtml
ScanImage BigTiff Specification - ScanImage 2016. http://scanimage.vidriotechnologies.com/display/SI2016/ ScanImage+BigTiff+Specification
CIPA DC-008-2016: Exchangeable image file format for digital still cameras: Exif Version 2.31. http://www.cipa.jp/std/documents/e/DC-008-Translation-2016-E.pdf
ZIF, the Zoomable Image File format. http://zif.photo/
GeoTIFF File Format https://www.gdal.org/frmt_gtiff.html
Examples
Save a 3D numpy array to a multi-page, 16-bit grayscale TIFF file:
>>> data = numpy.random.randint(0, 2**12, (4, 301, 219), 'uint16')
>>> imwrite('temp.tif', data, photometric='minisblack')
Read the whole image stack from the TIFF file as numpy array:
>>> image_stack = imread('temp.tif')
>>> image_stack.shape
(4, 301, 219)
>>> image_stack.dtype
dtype('uint16')
Read the image from first page in the TIFF file as numpy array:
>>> image = imread('temp.tif', key=0)
>>> image.shape
(301, 219)
Read images from a sequence of TIFF files as numpy array:
>>> image_sequence = imread(['temp.tif', 'temp.tif'])
>>> image_sequence.shape
(2, 4, 301, 219)
Save a numpy array to a single-page RGB TIFF file:
>>> data = numpy.random.randint(0, 255, (256, 256, 3), 'uint8')
>>> imwrite('temp.tif', data, photometric='rgb')
Save a floating-point array and metadata, using zlib compression:
>>> data = numpy.random.rand(2, 5, 3, 301, 219).astype('float32')
>>> imwrite('temp.tif', data, compress=6, metadata={'axes': 'TZCYX'})
Save a volume with xyz voxel size 2.6755x2.6755x3.9474 碌m^3 to an ImageJ file:
>>> volume = numpy.random.randn(57*256*256).astype('float32')
>>> volume.shape = 1, 57, 1, 256, 256, 1 # dimensions in TZCYXS order
>>> imwrite('temp.tif', volume, imagej=True, resolution=(1./2.6755, 1./2.6755),
... metadata={'spacing': 3.947368, 'unit': 'um'})
Get the shape and dtype of the images stored in the TIFF file:
>>> tif = TiffFile('temp.tif')
>>> len(tif.pages) # number of pages in the file
57
>>> page = tif.pages[0] # get shape and dtype of the image in the first page
>>> page.shape
(256, 256)
>>> page.dtype
dtype('float32')
>>> page.axes
'YX'
>>> series = tif.series[0] # get shape and dtype of the first image series
>>> series.shape
(57, 256, 256)
>>> series.dtype
dtype('float32')
>>> series.axes
'ZYX'
>>> tif.close()
Read hyperstack and metadata from the ImageJ file:
>>> with TiffFile('temp.tif') as tif:
... imagej_hyperstack = tif.asarray()
... imagej_metadata = tif.imagej_metadata
>>> imagej_hyperstack.shape
(57, 256, 256)
>>> imagej_metadata['slices']
57
Read the “XResolution” tag from the first page in the TIFF file:
>>> with TiffFile('temp.tif') as tif:
... tag = tif.pages[0].tags['XResolution']
>>> tag.value
(2000, 5351)
>>> tag.name
'XResolution'
>>> tag.code
282
>>> tag.count
1
>>> tag.dtype
'2I'
>>> tag.valueoffset
360
Read images from a selected range of pages:
>>> image = imread('temp.tif', key=range(4, 40, 2))
>>> image.shape
(18, 256, 256)
Create an empty TIFF file and write to the memory-mapped numpy array:
>>> memmap_image = memmap('temp.tif', shape=(256, 256), dtype='float32')
>>> memmap_image[255, 255] = 1.0
>>> memmap_image.flush()
>>> memmap_image.shape, memmap_image.dtype
((256, 256), dtype('float32'))
>>> del memmap_image
Memory-map image data of the first page in the TIFF file:
>>> memmap_image = memmap('temp.tif', page=0)
>>> memmap_image[255, 255]
1.0
>>> del memmap_image
Successively append images to a BigTIFF file, which can exceed 4 GB:
>>> data = numpy.random.randint(0, 255, (5, 2, 3, 301, 219), 'uint8')
>>> with TiffWriter('temp.tif', bigtiff=True) as tif:
... for i in range(data.shape[0]):
... tif.save(data[i], compress=6, photometric='minisblack')
Iterate over pages and tags in the TIFF file and successively read images:
>>> with TiffFile('temp.tif') as tif:
... image_stack = tif.asarray()
... for page in tif.pages:
... for tag in page.tags.values():
... tag_name, tag_value = tag.name, tag.value
... image = page.asarray()
Save two image series to a TIFF file:
>>> data0 = numpy.random.randint(0, 255, (301, 219, 3), 'uint8')
>>> data1 = numpy.random.randint(0, 255, (5, 301, 219), 'uint16')
>>> with TiffWriter('temp.tif') as tif:
... tif.save(data0, compress=6, photometric='rgb')
... tif.save(data1, compress=6, photometric='minisblack', contiguous=False)
Read the second image series from the TIFF file:
>>> series1 = imread('temp.tif', series=1)
>>> series1.shape
(5, 301, 219)
Read an image stack from a series of TIFF files with a file name pattern:
>>> imwrite('temp_C001T001.tif', numpy.random.rand(64, 64))
>>> imwrite('temp_C001T002.tif', numpy.random.rand(64, 64))
>>> image_sequence = TiffSequence('temp_C001*.tif', pattern='axes')
>>> image_sequence.shape
(1, 2)
>>> image_sequence.axes
'CT'
>>> data = image_sequence.asarray()
>>> data.shape
(1, 2, 64, 64)
-
tifffile.tifffile.
imwrite
(file, data=None, shape=None, dtype=None, **kwargs)¶ Write numpy array to TIFF file.
Refer to the TiffWriter class and its asarray function for documentation.
A BigTIFF file is created if the data size in bytes is larger than 4 GB minus 32 MB (for metadata), and ‘bigtiff’ is not specified, and ‘imagej’ or ‘truncate’ are not enabled.
- Parameters
file (str or binary stream) – File name or writable binary stream, such as an open file or BytesIO.
data (array_like) – Input image. The last dimensions are assumed to be image depth, height, width, and samples. If None, an empty array of the specified shape and dtype is saved to file. Unless ‘byteorder’ is specified in ‘kwargs’, the TIFF file byte order is determined from the data’s dtype or the dtype argument.
shape (tuple) – If ‘data’ is None, shape of an empty array to save to the file.
dtype (numpy.dtype) – If ‘data’ is None, datatype of an empty array to save to the file.
kwargs (dict) – Parameters ‘append’, ‘byteorder’, ‘bigtiff’, and ‘imagej’, are passed to the TiffWriter constructor. Other parameters are passed to the TiffWriter.save function.
- Returns
offset, bytecount – If the image data are written contiguously, return offset and bytecount of image data in the file.
- Return type
-
tifffile.tifffile.
imread
(files, **kwargs)¶ Return image data from TIFF file(s) as numpy array.
Refer to the TiffFile and TiffSequence classes and their asarray functions for documentation.
- Parameters
files (str, binary stream, or sequence) – File name, seekable binary stream, glob pattern, or sequence of file names.
kwargs (dict) – Parameters ‘name’, ‘offset’, ‘size’, ‘multifile’, and ‘is_ome’ are passed to the TiffFile constructor. The ‘pattern’ and ‘ioworkers’ parameters are passed to the TiffSequence constructor. Other parameters are passed to the asarray functions. The first image series in the file is returned if no arguments are provided.
-
tifffile.tifffile.
imshow
(data, photometric=None, planarconfig=None, bitspersample=None, interpolation=None, cmap=None, vmin=None, vmax=None, figure=None, title=None, dpi=96, subplot=None, maxdim=None, **kwargs)¶ Plot n-dimensional images using matplotlib.pyplot.
Return figure, subplot and plot axis. Requires pyplot already imported C{from matplotlib import pyplot}.
- Parameters
data (nd array) – The image data.
photometric ({'MINISWHITE', 'MINISBLACK', 'RGB', or 'PALETTE'}) – The color space of the image data.
planarconfig ({'CONTIG' or 'SEPARATE'}) – Defines how components of each pixel are stored.
bitspersample (int) – Number of bits per channel in integer RGB images.
interpolation (str) – The image interpolation method used in matplotlib.imshow. By default, ‘nearest’ will be used for image dimensions <= 512, else ‘bilinear’.
cmap (str or matplotlib.colors.Colormap) – The colormap maps non-RGBA scalar data to colors.
vmax (vmin,) – Data range covered by the colormap. By default, the complete range of the data is covered.
figure (matplotlib.figure.Figure) – Matplotlib figure to use for plotting.
title (str) – Window and subplot title.
subplot (int) – A matplotlib.pyplot.subplot axis.
maxdim (int) – Maximum image width and length.
kwargs (dict) – Additional arguments for matplotlib.pyplot.imshow.
-
tifffile.tifffile.
memmap
(filename, shape=None, dtype=None, page=None, series=0, mode='r+', **kwargs)¶ Return memory-mapped numpy array stored in TIFF file.
Memory-mapping requires data stored in native byte order, without tiling, compression, predictors, etc. If ‘shape’ and ‘dtype’ are provided, existing files will be overwritten or appended to depending on the ‘append’ parameter. Otherwise the image data of a specified page or series in an existing file will be memory-mapped. By default, the image data of the first page series is memory-mapped. Call flush() to write any changes in the array to the file. Raise ValueError if the image data in the file is not memory-mappable.
- Parameters
filename (str) – Name of the TIFF file which stores the array.
shape (tuple) – Shape of the empty array.
dtype (numpy.dtype) – Datatype of the empty array.
page (int) – Index of the page which image data to memory-map.
series (int) – Index of the page series which image data to memory-map.
mode ({'r+', 'r', 'c'}) – The file open mode. Default is to open existing file for reading and writing (‘r+’).
kwargs (dict) – Additional parameters passed to imwrite() or TiffFile().
-
tifffile.tifffile.
lsm2bin
(lsmfile, binfile=None, tile=None, verbose=True)¶ Convert [MP]TZCYX LSM file to series of BIN files.
One BIN file containing ‘ZCYX’ data are created for each position, time, and tile. The position, time, and tile indices are encoded at the end of the filenames.
-
class
tifffile.tifffile.
TiffFile
(arg, name=None, offset=None, size=None, multifile=True, _useframes=None, **kwargs)¶ Bases:
object
Read image and metadata from TIFF file.
TiffFile instances must be closed using the ‘close’ method, which is automatically called when using the ‘with’ context manager.
TiffFile instances are not thread-safe.
-
pages
¶ Sequence of TIFF pages in file.
- Type
TiffPages
-
series
¶ Sequences of closely related TIFF pages. These are computed from OME, LSM, ImageJ, etc. metadata or based on similarity of page properties such as shape, dtype, and compression.
- Type
list of TiffPageSeries
-
is_flag
¶ If True, file is of a certain format. Flags are: bigtiff, uniform, shaped, ome, imagej, stk, lsm, fluoview, nih, vista, micromanager, metaseries, mdgel, mediacy, tvips, fei, sem, scn, svs, scanimage, andor, epics, ndpi, pilatus, qpi.
- Type
-
All attributes are read-only.
-
andor_metadata
¶ Return Andor tags as dict.
-
asarray
(key=None, series=None, out=None, validate=True, maxworkers=None)¶ Return image data from selected TIFF page(s) as numpy array.
By default, the data from the first series is returned.
- Parameters
key (int, slice, or sequence of indices) – Defines which pages to return as array. If None (default), data from a series (default 0) is returned. If not None, data from the specified pages in the whole file (if ‘series’ is None) or a specified series are returned as a stacked array. Requesting an array from multiple pages that are not compatible wrt. shape, dtype, compression etc is undefined, i.e. may crash or return incorrect values.
series (int or TiffPageSeries) – Defines which series of pages to return as array.
out (numpy.ndarray, str, or file-like object) – Buffer where image data will be saved. If None (default), a new array will be created. If numpy.ndarray, a writable array of compatible dtype and shape. If ‘memmap’, directly memory-map the image data in the TIFF file if possible; else create a memory-mapped array in a temporary file. If str or open file, the file name or file object used to create a memory-map to an array stored in a binary file on disk.
validate (bool) – If True (default), validate various tags. Passed to TiffPage.asarray().
maxworkers (int or None) – Maximum number of threads to concurrently get data from multiple pages or compressed segments. If None (default), up to half the CPU cores are used. If 1, multi-threading is disabled. Reading data from file is limited to a single thread. Using multiple threads can significantly speed up this function if the bottleneck is decoding compressed data, e.g. in case of large LZW compressed LSM files or JPEG compressed tiled slides. If the bottleneck is I/O or pure Python code, using multiple threads might be detrimental.
- Returns
Image data from the specified pages. See the TiffPage.asarray function for operations that are applied (or not) to the raw data stored in the file.
- Return type
numpy.ndarray
-
byteorder
¶
-
close
()¶ Close open file handle(s).
-
epics_metadata
¶ Return EPICS areaDetector tags as dict.
-
fei_metadata
¶ Attribute whose value is computed on first access.
-
filehandle
¶ Return file handle.
-
filename
¶ Return name of file handle.
-
flags
¶ Attribute whose value is computed on first access.
-
fluoview_metadata
¶ Attribute whose value is computed on first access.
-
fstat
¶ Attribute whose value is computed on first access.
-
geotiff_metadata
¶ Return GeoTIFF metadata from first page as dict.
-
imagej_metadata
¶ Attribute whose value is computed on first access.
-
is_appendable
¶ Return if pages can be appended to file without corrupting.
-
is_bigtiff
¶
-
is_mdgel
¶ Attribute whose value is computed on first access.
-
is_uniform
¶ Attribute whose value is computed on first access.
-
lsm_metadata
¶ Return LSM metadata from CZ_LSMINFO tag as dict.
-
mdgel_metadata
¶ Attribute whose value is computed on first access.
-
metaseries_metadata
¶ Attribute whose value is computed on first access.
-
micromanager_metadata
¶ Attribute whose value is computed on first access.
-
nih_metadata
¶ Attribute whose value is computed on first access.
-
ome_metadata
¶ Return OME XML.
-
pilatus_metadata
¶ Attribute whose value is computed on first access.
-
scanimage_metadata
¶ Attribute whose value is computed on first access.
-
sem_metadata
¶ Return SEM metadata from CZ_SEM tag as dict.
-
series
Attribute whose value is computed on first access.
-
shaped_metadata
¶ Attribute whose value is computed on first access.
-
sis_metadata
¶ Attribute whose value is computed on first access.
-
stk_metadata
¶ Attribute whose value is computed on first access.
-
tvips_metadata
¶ Return TVIPS tag as dict.
-
-
exception
tifffile.tifffile.
TiffFileError
¶ Bases:
Exception
Exception to indicate invalid TIFF structure.
-
class
tifffile.tifffile.
TiffSequence
(files=None, container=None, sort=None, pattern=None, imread=<function imread>)¶ Bases:
tifffile.tifffile.FileSequence
Series of TIFF files.
-
class
tifffile.tifffile.
TiffWriter
(file, bigtiff=False, byteorder=None, append=False, imagej=False)¶ Bases:
object
Write numpy arrays to TIFF file.
TiffWriter instances must be closed using the ‘close’ method, which is automatically called when using the ‘with’ context manager.
TiffWriter instances are not thread-safe.
TiffWriter’s main purpose is saving nD numpy array’s as TIFF, not to create any possible TIFF format. Specifically, SubIFDs, ExifIFD, and GPSIFD tags are not supported.
-
close
()¶ Write remaining pages and close file handle.
-
save
(data=None, shape=None, dtype=None, returnoffset=False, photometric=None, planarconfig=None, extrasamples=None, tile=None, contiguous=True, align=16, truncate=False, compress=0, rowsperstrip=None, predictor=False, subsampling=None, colormap=None, description=None, datetime=None, resolution=None, subfiletype=0, software='tifffile.py', metadata={}, ijmetadata=None, extratags=())¶ Write numpy array and tags to TIFF file.
The data shape’s last dimensions are assumed to be image depth, height (length), width, and samples. If a colormap is provided, the data’s dtype must be uint8 or uint16 and the data values are indices into the last dimension of the colormap. If ‘shape’ and ‘dtype’ are specified, an empty array is saved. This option cannot be used with compression or multiple tiles. Image data are written uncompressed in one strip per plane by default. Dimensions larger than 2 to 4 (depending on photometric mode, planar configuration, and SGI mode) are flattened and saved as separate pages. The SampleFormat and BitsPerSample tags are derived from the data type.
- Parameters
data (numpy.ndarray or None) – Input image array.
shape (tuple or None) – Shape of the empty array to save. Used only if ‘data’ is None.
dtype (numpy.dtype or None) – Datatype of the empty array to save. Used only if ‘data’ is None.
returnoffset (bool) – If True and the image data in the file is memory-mappable, return the offset and number of bytes of the image data in the file.
photometric ({'MINISBLACK', 'MINISWHITE', 'RGB', 'PALETTE', 'CFA'}) – The color space of the image data. By default, this setting is inferred from the data shape and the value of colormap. For CFA images, DNG tags must be specified in ‘extratags’.
planarconfig ({'CONTIG', 'SEPARATE'}) – Specifies if samples are stored interleaved or in separate planes. By default, this setting is inferred from the data shape. If this parameter is set, extra samples are used to store grayscale images. ‘CONTIG’: last dimension contains samples. ‘SEPARATE’: third last dimension contains samples.
extrasamples (tuple of {'UNSPECIFIED', 'ASSOCALPHA', 'UNASSALPHA'}) – Defines the interpretation of extra components in pixels. ‘UNSPECIFIED’: no transparency information (default). ‘ASSOCALPHA’: single, true transparency with pre-multiplied color. ‘UNASSALPHA’: independent transparency masks.
tile (tuple of int) – The shape ([depth,] length, width) of image tiles to write. If None (default), image data are written in strips. The tile length and width must be a multiple of 16. If the tile depth is provided, the SGI ImageDepth and TileDepth tags are used to save volume data. Unless a single tile is used, tiles cannot be used to write contiguous files. Few software can read the SGI format, e.g. MeVisLab.
contiguous (bool) – If True (default) and the data and parameters are compatible with previous ones, if any, the image data are stored contiguously after the previous one. In that case, ‘photometric’, ‘planarconfig’, ‘rowsperstrip’, are ignored. Metadata such as ‘description’, ‘metadata’, ‘datetime’, and ‘extratags’ are written to the first page of a contiguous series only.
align (int) – Byte boundary on which to align the image data in the file. Default 16. Use mmap.ALLOCATIONGRANULARITY for memory-mapped data. Following contiguous writes are not aligned.
truncate (bool) – If True, only write the first page including shape metadata if possible (uncompressed, contiguous, not tiled). Other TIFF readers will only be able to read part of the data.
compress (int or str or (str, int)) – If 0 (default), data are written uncompressed. If 0-9, the level of ADOBE_DEFLATE compression. If a str, one of TIFF.COMPESSORS, e.g. ‘LZMA’ or ‘ZSTD’. If a tuple, the first item is one of TIFF.COMPESSORS and the second item is the compression level. Compression cannot be used to write contiguous files. Compressors may require certain data shapes, types or value ranges. For example, JPEG requires grayscale or RGB(A), uint8 or 12-bit uint16. JPEG compression is experimental. JPEG markers and TIFF tags may not match.
rowsperstrip (int) – The number of rows per strip. By default, strips will be ~64 KB if compression is enabled, else rowsperstrip is set to the image length. Bilevel images are always stored in one strip per plane.
predictor (bool) – If True, apply horizontal differencing or floating-point predictor before compression.
subsampling ({(1, 1), (2, 1), (2, 2), (4, 1)}) – The horizontal and vertical subsampling factors used for the chrominance components of images. The default is (2, 2). Currently applies to JPEG compression of RGB images only. Images will be stored in YCbCr colorspace. Segment widths must be a multiple of the horizontal factor. Segment lengths and rowsperstrip must be a multiple of the vertical factor.
colormap (numpy.ndarray) – RGB color values for the corresponding data value. Must be of shape (3, 2**(data.itemsize*8)) and dtype uint16.
description (str) – The subject of the image. Must be 7-bit ASCII. Cannot be used with the ImageJ format. Saved with the first page only.
datetime (datetime, str, or bool) – Date and time of image creation in ‘%Y:%m:%d %H:%M:%S’ format or datetime object. Else if True, the current date and time is used. Saved with the first page only.
resolution ((float, float[, str]) or ((int, int), (int, int)[, str])) – X and Y resolutions in pixels per resolution unit as float or rational numbers. A third, optional parameter specifies the resolution unit, which must be None (default for ImageJ), ‘INCH’ (default), or ‘CENTIMETER’.
subfiletype (int) – Bitfield to indicate the kind of data. Set bit 0 if the image is a reduced-resolution version of another image. Set bit 1 if the image is part of a multi-page image. Set bit 2 if the image is transparency mask for another image (photometric must be MASK, SamplesPerPixel and BitsPerSample must be 1).
software (str) – Name of the software used to create the file. Must be 7-bit ASCII. Saved with the first page only.
metadata (dict) – Additional metadata to be saved along with shape information in JSON or ImageJ formats in an ImageDescription tag. If None, do not write a second ImageDescription tag. Strings must be 7-bit ASCII. Saved with the first page only.
ijmetadata (dict) – Additional metadata to be saved in application specific IJMetadata and IJMetadataByteCounts tags. Refer to the imagej_metadata_tag function for valid keys and values. Saved with the first page only.
extratags (sequence of tuples) –
Additional tags as [(code, dtype, count, value, writeonce)].
- codeint
The TIFF tag Id.
- dtypestr
Data type of items in ‘value’ in Python struct format. One of B, s, H, I, 2I, b, h, i, 2i, f, d, Q, or q.
- countint
Number of data values. Not used for string or byte string values.
- valuesequence
’Count’ values compatible with ‘dtype’. Byte strings must contain count values of dtype packed as binary data.
- writeoncebool
If True, the tag is written to the first page only.
-
-
class
tifffile.tifffile.
TiffPage
(parent, index, keyframe=None)¶ Bases:
object
TIFF image file directory (IFD).
-
axes
¶ Axes label codes: ‘X’ width, ‘Y’ height, ‘S’ sample, ‘I’ image series|page|plane, ‘Z’ depth, ‘C’ color|em-wavelength|channel, ‘E’ ex-wavelength|lambda, ‘T’ time, ‘R’ region|tile, ‘A’ angle, ‘P’ phase, ‘H’ lifetime, ‘L’ exposure, ‘V’ event, ‘Q’ unknown, ‘_’ missing
- Type
Dictionary of tags in IFD. {tag.name: TiffTag}
- Type
-
colormap
¶ Color look up table, if exists.
- Type
numpy.ndarray
-
All attributes are read-only.
Notes
The internal, normalized ‘_shape’ attribute is 6 dimensional:
0 : number planes/images (stk, ij). 1 : planar samplesperpixel. 2 : imagedepth Z (sgi). 3 : imagelength Y. 4 : imagewidth X. 5 : contig samplesperpixel.
Attribute whose value is computed on first access.
-
asarray
(out=None, squeeze=True, lock=None, reopen=True, maxsize=None, maxworkers=None, validate=True)¶ Read image data from file and return as numpy array.
Raise ValueError if format is unsupported.
- Parameters
out (numpy.ndarray, str, or file-like object) – Buffer where image data will be saved. If None (default), a new array will be created. If numpy.ndarray, a writable array of compatible dtype and shape. If ‘memmap’, directly memory-map the image data in the TIFF file if possible; else create a memory-mapped array in a temporary file. If str or open file, the file name or file object used to create a memory-map to an array stored in a binary file on disk.
squeeze (bool) – If True (default), all length-1 dimensions (except X and Y) are squeezed out from the array. If False, the shape of the returned array might be different from the page.shape.
lock ({RLock, NullContext}) – A reentrant lock used to synchronize seeks and reads from file. If None (default), the lock of the parent’s filehandle is used.
reopen (bool) – If True (default) and the parent file handle is closed, the file is temporarily re-opened and closed if no exception occurs.
maxsize (int) – Maximum size of data before a ValueError is raised. Can be used to catch DOS. Default: 16 TB.
maxworkers (int or None) – Maximum number of threads to concurrently decode compressed segments. If None (default), up to half the CPU cores are used. See remarks in TiffFile.asarray.
validate (bool) – If True (default), validate various parameters. If None, only validate parameters and return None.
- Returns
Numpy array of decompressed, depredicted, and unpacked image data read from Strip/Tile Offsets/ByteCounts, formatted according to shape and dtype metadata found in tags and parameters. Photometric conversion, pre-multiplied alpha, orientation, and colorimetry corrections are not applied. Specifically, CMYK images are not converted to RGB, MinIsWhite images are not inverted, and color palettes are not applied. An exception are YCbCr JPEG compressed images, which will be converted to RGB.
- Return type
numpy.ndarray
-
aspage
()¶ Return self.
-
asrgb
(uint8=False, alpha=None, colormap=None, dmin=None, dmax=None, **kwargs)¶ Return image data as RGB(A).
Work in progress.
-
bitspersample
= 1¶
-
colormap
= None
-
compression
= 1¶
-
decode
¶ Attribute whose value is computed on first access.
-
description
= ''¶
-
description1
= ''¶
Attribute whose value is computed on first access.
-
extrasamples
= 1¶
-
fillorder
= 1¶
-
flags
¶ Attribute whose value is computed on first access.
Attribute whose value is computed on first access.
-
hash
¶ Return checksum to identify pages in same series.
-
imagedepth
= 1¶
-
imagelength
= 0¶
-
imagewidth
= 0¶
-
is_andor
¶ Page contains Andor Technology tags.
-
is_contiguous
¶ Attribute whose value is computed on first access.
-
is_epics
¶ Page contains EPICS areaDetector tags.
-
is_fei
¶ Page contains SFEG or HELIOS metadata.
-
is_final
¶ Attribute whose value is computed on first access.
-
is_fluoview
¶ Page contains FluoView MM_STAMP tag.
-
is_geotiff
¶ Page contains GeoTIFF metadata.
-
is_imagej
¶ Attribute whose value is computed on first access.
-
is_lsm
¶ Page contains CZ_LSMINFO tag.
-
is_mask
¶ Page is transparency mask for another image.
-
is_mdgel
¶ Page contains MDFileTag tag.
-
is_mediacy
¶ Page contains Media Cybernetics Id tag.
-
is_memmappable
¶ Attribute whose value is computed on first access.
-
is_metaseries
¶ Page contains MDS MetaSeries metadata in ImageDescription tag.
-
is_micromanager
¶ Page contains Micro-Manager metadata.
-
is_mrc
¶ Page is part of Mixed Raster Content.
-
is_multipage
¶ Page is part of multi-page image.
-
is_ndpi
¶ Attribute whose value is computed on first access.
-
is_nih
¶ Page contains NIH image header.
-
is_ome
¶ Page contains OME-XML in ImageDescription tag.
-
is_pilatus
¶ Page contains Pilatus tags.
-
is_qpi
¶ Page contains PerkinElmer tissue images metadata.
-
is_reduced
¶ Page is reduced image of another image.
-
is_scanimage
¶ Page contains ScanImage metadata.
-
is_scn
¶ Page contains Leica SCN XML in ImageDescription tag.
-
is_sem
¶ Page contains Zeiss SEM metadata.
-
is_sgi
¶ Page contains SGI image and tile depth tags.
-
is_shaped
¶ Attribute whose value is computed on first access.
-
is_sis
¶ Page contains Olympus SIS metadata.
-
is_stk
¶ Page contains UIC2Tag tag.
-
is_subsampled
¶ Page contains chroma subsampled image.
-
is_svs
¶ Page contains Aperio metadata.
-
is_tiled
¶ Page contains tiled image.
-
is_tvips
¶ Page contains TVIPS metadata.
-
is_vista
¶ Software tag is ‘ISS Vista’.
-
keyframe
¶ Return keyframe, self.
-
ndim
¶ Return number of array dimensions.
Attribute whose value is computed on first access.
-
nodata
= 0¶
-
pages
¶ Attribute whose value is computed on first access.
-
photometric
= 0¶
-
planarconfig
= 1¶
-
predictor
= 1¶
-
rowsperstrip
= 4294967295¶
-
sampleformat
= 1¶
-
samplesperpixel
= 1¶
-
size
¶ Return number of elements in array.
-
software
= ''¶
-
subfiletype
= 0¶
-
tiledepth
= 1¶
-
tilelength
= 0¶
-
tilewidth
= 0¶
-
-
class
tifffile.tifffile.
TiffPageSeries
(pages, shape, dtype, axes, parent=None, name=None, transform=None, kind=None, truncated=False)¶ Bases:
object
Series of TIFF pages with compatible shape and data type.
-
pages
¶ Sequence of TiffPages in series.
- Type
list of TiffPage
-
dtype
¶ Data type (native byte order) of the image array in series.
- Type
numpy.dtype
-
asarray
(out=None)¶ Return image data from series of TIFF pages as numpy array.
-
ndim
¶ Return number of array dimensions.
-
offset
Attribute whose value is computed on first access.
-
pages
Return sequence of all pages in series.
-
size
¶ Return number of elements in array.
-
-
class
tifffile.tifffile.
TiffFrame
(parent, index, offset=None, keyframe=None, offsets=None, bytecounts=None)¶ Bases:
object
Lightweight TIFF image file directory (IFD).
Only a limited number of tag values are read from file, e.g. StripOffsets, and StripByteCounts. Other tag values are assumed to be identical with a specified TiffPage instance, the keyframe.
TiffFrame is intended to reduce resource usage and speed up reading image data from file, not for introspection of metadata.
Not compatible with Python 2.
-
asarray
(*args, **kwargs)¶ Read image data from file and return as numpy array.
-
aspage
()¶ Return TiffPage from file.
-
asrgb
(*args, **kwargs)¶ Read image data from file and return RGB image as numpy array.
-
hash
¶ Return checksum to identify pages in same series.
-
index
¶
-
is_contiguous
¶ Return offset and size of contiguous data, else None.
-
is_mdgel
= False¶
-
is_memmappable
¶ Return if page’s image data in file can be memory-mapped.
-
keyframe
¶ Return keyframe.
-
offset
¶
-
pages
= None¶
-
parent
¶
-
-
class
tifffile.tifffile.
TiffTag
(parent, tagheader, tagoffset)¶ Bases:
object
TIFF tag structure.
-
name
¶ Name of tag.
- Type
string
-
value
¶ Tag data as Python object.
- Type
various types
-
All attributes are read-only.
-
code
-
count
-
dtype
-
name
Return name of tag from TIFF.TAGS registry.
-
value
-
valueoffset
¶
-
-
class
tifffile.tifffile.
FileHandle
(file, mode='rb', name=None, offset=None, size=None)¶ Bases:
object
Binary file handle.
A limited, special purpose file handle that can:
handle embedded files (for CZI within CZI files)
re-open closed files (for multi-file formats, such as OME-TIFF)
read and write numpy arrays and records from file like objects
Only ‘rb’ and ‘wb’ modes are supported. Concurrently reading and writing of the same stream is untested.
When initialized from another file handle, do not use it unless this FileHandle is closed.
-
All attributes are read-only.
-
close
()¶ Close file.
-
closed
¶
-
dirname
¶
-
flush
()¶ Flush write buffers if applicable.
-
is_file
-
lock
¶
-
memmap_array
(dtype, shape, offset=0, mode='r', order='C')¶ Return numpy.memmap of data stored in file.
-
name
-
open
()¶ Open or re-open file.
-
path
-
read
(size=-1)¶ Read ‘size’ bytes from file, or until EOF is reached.
-
read_array
(dtype, count=-1, out=None)¶ Return numpy array from file in native byte order.
-
read_record
(dtype, shape=1, byteorder=None)¶ Return numpy record from file.
-
read_segments
(offsets, bytecounts, lock=None, buffersize=None)¶ Return iterator over segments read from file.
A reentrant lock can be used to synchronize seeks and reads up to buffersize bytes.
-
readinto
(b)¶ Read up to len(b) bytes into b, and return number of bytes read.
-
seek
(offset, whence=0)¶ Set file’s current position.
-
size
-
tell
()¶ Return file’s current position.
-
write
(bytestring)¶ Write bytestring to file.
-
write_array
(data)¶ Write numpy array to binary file.
-
write_empty
(size)¶ Append size bytes to file. Position must be at end of file.
-
class
tifffile.tifffile.
FileSequence
(fromfile, files, container=None, sort=None, pattern=None)¶ Bases:
object
Series of files containing array data of compatible shape and data type.
-
asarray
(file=None, ioworkers=1, out=None, **kwargs)¶ Read image data from files and return as numpy array.
Raise IndexError or ValueError if array shapes do not match.
- Parameters
ioworkers (int or None) – Maximum number of threads to execute the array read function asynchronously. Default: 1. If None, default to the number of processors multiplied by 5. Using threads can significantly improve runtime when reading many small files from a network share.
out (numpy.ndarray, str, or file-like object) – Buffer where image data will be saved. If None (default), a new array will be created. If numpy.ndarray, a writable array of compatible dtype and shape. If ‘memmap’, create a memory-mapped array in a temporary file. If str or open file, the file name or file object used to create a memory-map to an array stored in a binary file on disk.
kwargs (dict) – Additional parameters passed to the array read function.
-
close
()¶
-
-
class
tifffile.tifffile.
Timer
(message='', end=' ')¶ Bases:
object
Stopwatch for timing execution speed.
-
clock
()¶ perf_counter() -> float
Performance counter for benchmarking.
-
duration
¶
-
print
(message='', end=None)¶ Print duration from timer start till last stop or now.
-
start
(message='', end=' ')¶ Start timer and return current time.
-
started
¶
-
stop
(message='', end=' ')¶ Return duration of timer till start.
-
stopped
¶
-
-
class
tifffile.tifffile.
lazyattr
(func)¶ Bases:
object
Attribute whose value is computed on first access.
-
func
¶
-
-
tifffile.tifffile.
natural_sorted
(iterable)¶ Return human sorted list of strings.
E.g. for sorting file names.
>>> natural_sorted(['f1', 'f2', 'f10']) ['f1', 'f2', 'f10']
-
tifffile.tifffile.
stripnull
(string, null=b'\x00')¶ Return string truncated at first null character.
Clean NULL terminated C strings. For unicode strings use null=‘0’.
>>> stripnull(b'string\x00') b'string' >>> stripnull('string\x00', null='\0') 'string'
-
tifffile.tifffile.
transpose_axes
(image, axes, asaxes=None)¶ Return image with its axes permuted to match specified axes.
A view is returned if possible.
>>> transpose_axes(numpy.zeros((2, 3, 4, 5)), 'TYXC', asaxes='CTZYX').shape (5, 2, 1, 3, 4)
-
tifffile.tifffile.
squeeze_axes
(shape, axes, skip=None)¶ Return shape and axes with single-dimensional entries removed.
Remove unused dimensions unless their axes are listed in ‘skip’.
>>> squeeze_axes((5, 1, 2, 1, 1), 'TZYXC') ((5, 2, 1), 'TYX')
-
tifffile.tifffile.
create_output
(out, shape, dtype, mode='w+', suffix=None)¶ Return numpy array where image data of shape and dtype can be copied.
The ‘out’ parameter may have the following values or types:
- None
An empty array of shape and dtype is created and returned.
- numpy.ndarray
An existing writable array of compatible dtype and shape. A view of the same array is returned after verification.
- ‘memmap’ or ‘memmap:tempdir’
A memory-map to an array stored in a temporary binary file on disk is created and returned.
- str or open file
The file name or file object used to create a memory-map to an array stored in a binary file on disk. The created memory-mapped array is returned.
-
tifffile.tifffile.
repeat_nd
(a, repeats)¶ Return read-only view into input array with elements repeated.
Zoom nD image by integer factors using nearest neighbor interpolation (box filter).
- Parameters
a (array_like) – Input array.
repeats (sequence of int) – The number of repetitions to apply along each dimension of input array.
Examples
>>> repeat_nd([[1, 2], [3, 4]], (2, 2)) array([[1, 1, 2, 2], [1, 1, 2, 2], [3, 3, 4, 4], [3, 3, 4, 4]])
-
tifffile.tifffile.
format_size
(size, threshold=1536)¶ Return file size as string from byte size.
>>> format_size(1234) '1234 B' >>> format_size(12345678901) '11.50 GiB'
-
tifffile.tifffile.
astype
(value, types=None)¶ Return argument as one of types if possible.
>>> astype('42') 42 >>> astype('3.14') 3.14 >>> astype('True') True >>> astype(b'Neee-Wom') 'Neee-Wom'
-
tifffile.tifffile.
product
(iterable)¶ Return product of sequence of numbers.
Equivalent of functools.reduce(operator.mul, iterable, 1). Multiplying numpy integers might overflow.
>>> product([2**8, 2**30]) 274877906944 >>> product([]) 1
-
tifffile.tifffile.
xml2dict
(xml, sanitize=True, prefix=None)¶ Return XML as dict.
>>> xml2dict('<?xml version="1.0" ?><root attr="name"><key>1</key></root>') {'root': {'key': 1, 'attr': 'name'}}
-
tifffile.tifffile.
pformat
(arg, width=79, height=24, compact=True)¶ Return pretty formatted representation of object as string.
Whitespace might be altered.
-
tifffile.tifffile.
str2bytes
(s, encoding='cp1252')¶ Return bytes from unicode string.
-
tifffile.tifffile.
nullfunc
(*args, **kwargs)¶ Null function.
>>> nullfunc('arg', kwarg='kwarg')
-
tifffile.tifffile.
update_kwargs
(kwargs, **keyvalues)¶ Update dict with keys and values if keys do not already exist.
>>> kwargs = {'one': 1, } >>> update_kwargs(kwargs, one=None, two=2) >>> kwargs == {'one': 1, 'two': 2} True
-
tifffile.tifffile.
parse_kwargs
(kwargs, *keys, **keyvalues)¶ Return dict with keys from keys|keyvals and values from kwargs|keyvals.
Existing keys are deleted from kwargs.
>>> kwargs = {'one': 1, 'two': 2, 'four': 4} >>> kwargs2 = parse_kwargs(kwargs, 'two', 'three', four=None, five=5) >>> kwargs == {'one': 1} True >>> kwargs2 == {'two': 2, 'four': 4, 'five': 5} True
-
tifffile.tifffile.
askopenfilename
(**kwargs)¶ Return file name(s) from Tkinter’s file open dialog.
-
tifffile.tifffile.
imsave
(file, data=None, shape=None, dtype=None, **kwargs)¶ Write numpy array to TIFF file.
Refer to the TiffWriter class and its asarray function for documentation.
A BigTIFF file is created if the data size in bytes is larger than 4 GB minus 32 MB (for metadata), and ‘bigtiff’ is not specified, and ‘imagej’ or ‘truncate’ are not enabled.
- Parameters
file (str or binary stream) – File name or writable binary stream, such as an open file or BytesIO.
data (array_like) – Input image. The last dimensions are assumed to be image depth, height, width, and samples. If None, an empty array of the specified shape and dtype is saved to file. Unless ‘byteorder’ is specified in ‘kwargs’, the TIFF file byte order is determined from the data’s dtype or the dtype argument.
shape (tuple) – If ‘data’ is None, shape of an empty array to save to the file.
dtype (numpy.dtype) – If ‘data’ is None, datatype of an empty array to save to the file.
kwargs (dict) – Parameters ‘append’, ‘byteorder’, ‘bigtiff’, and ‘imagej’, are passed to the TiffWriter constructor. Other parameters are passed to the TiffWriter.save function.
- Returns
offset, bytecount – If the image data are written contiguously, return offset and bytecount of image data in the file.
- Return type
-
tifffile.tifffile.
decode_lzw
(encoded)¶ Decompress LZW encoded byte string.
-
tifffile.tifffile.
decodelzw
(encoded)¶ Decompress LZW encoded byte string.
tifffile.tifffile_geodb module¶
GeoTIFF GeoKey Database.
Adapted from http://gis.ess.washington.edu/data/raster/drg/docs/geotiff.txt
-
class
tifffile.tifffile_geodb.
Angular
¶ Bases:
enum.IntEnum
Angular Units.
-
Arc_Minute
= 9103¶
-
Arc_Second
= 9104¶
-
DMS
= 9107¶
-
DMS_Hemisphere
= 9108¶
-
Degree
= 9102¶
-
Gon
= 9106¶
-
Grad
= 9105¶
-
Radian
= 9101¶
-
Undefined
= 0¶
-
User_Defined
= 32767¶
-
-
class
tifffile.tifffile_geodb.
CT
¶ Bases:
enum.IntEnum
Coordinate Transformation Codes.
-
AlbersEqualArea
= 11¶
-
AzimuthalEquidistant
= 12¶
-
CassiniSoldner
= 18¶
-
CylindricalEqualArea
= 28¶
-
EquidistantConic
= 13¶
-
Equirectangular
= 17¶
-
Gnomonic
= 19¶
-
HotineObliqueMercatorAzimuthCenter
= 9815¶
-
LambertAzimEqualArea
= 10¶
-
LambertConfConic_2SP
= 8¶
-
LambertConfConic_Helmert
= 9¶
-
Mercator
= 7¶
-
MillerCylindrical
= 20¶
-
NewZealandMapGrid
= 26¶
-
ObliqueMercator
= 3¶
-
ObliqueMercator_Laborde
= 4¶
-
ObliqueMercator_Rosenmund
= 5¶
-
ObliqueMercator_Spherical
= 6¶
-
ObliqueStereographic
= 16¶
-
Orthographic
= 21¶
-
PolarStereographic
= 15¶
-
Polyconic
= 22¶
-
Robinson
= 23¶
-
Sinusoidal
= 24¶
-
Stereographic
= 14¶
-
TransvMercator_Modified_Alaska
= 2¶
-
TransvMercator_SouthOriented
= 27¶
-
TransverseMercator
= 1¶
-
Undefined
= 0¶
-
User_Defined
= 32767¶
-
VanDerGrinten
= 25¶
-
-
class
tifffile.tifffile_geodb.
Datum
¶ Bases:
enum.IntEnum
Geodetic Datum Codes.
-
Adindan
= 6201¶
-
Afgooye
= 6205¶
-
Agadez
= 6206¶
-
Ain_el_Abd_1970
= 6204¶
-
Amersfoort
= 6289¶
-
Ancienne_Triangulation_Francaise
= 6901¶
-
Aratu
= 6208¶
-
Arc_1950
= 6209¶
-
Arc_1960
= 6210¶
-
Australian_Geodetic_Datum_1966
= 6202¶
-
Australian_Geodetic_Datum_1984
= 6203¶
-
Barbados
= 6212¶
-
Batavia
= 6211¶
-
Beduaram
= 6213¶
-
Beijing_1954
= 6214¶
-
Bermuda_1957
= 6216¶
-
Bern_1898
= 6217¶
-
Bern_1938
= 6306¶
-
Bogota
= 6218¶
-
Bukit_Rimpah
= 6219¶
-
Camacupa
= 6220¶
-
Campo_Inchauspe
= 6221¶
-
Cape
= 6222¶
-
Carthage
= 6223¶
-
Chua
= 6224¶
-
Conakry_1905
= 6315¶
-
Corrego_Alegre
= 6225¶
-
Cote_d_Ivoire
= 6226¶
-
Datum_73
= 6274¶
-
Dealul_Piscului_1970
= 6317¶
-
Deir_ez_Zor
= 6227¶
-
Deutsche_Hauptdreiecksnetz
= 6314¶
-
Douala
= 6228¶
-
Egypt_1907
= 6229¶
-
European_Datum_1950
= 6230¶
-
European_Datum_1987
= 6231¶
-
European_Reference_System_1989
= 6258¶
-
Fahud
= 6232¶
-
Gandajika_1970
= 6233¶
-
Garoua
= 6234¶
-
Geocentric_Datum_of_Australia_1994
= 6283¶
-
Guyane_Francaise
= 6235¶
-
Herat_North
= 6255¶
-
Hito_XVIII_1963
= 6254¶
-
Hu_Tzu_Shan
= 6236¶
-
Hungarian_Datum_1972
= 6237¶
-
Indian_1954
= 6239¶
-
Indian_1975
= 6240¶
-
Indonesian_Datum_1974
= 6238¶
-
Jamaica_1875
= 6241¶
-
Jamaica_1969
= 6242¶
-
Kalianpur
= 6243¶
-
Kandawala
= 6244¶
-
Kertau
= 6245¶
-
Kuwait_Oil_Company
= 6246¶
-
La_Canoa
= 6247¶
-
Lake
= 6249¶
-
Leigon
= 6250¶
-
Liberia_1964
= 6251¶
-
Lisbon
= 6207¶
-
Loma_Quintana
= 6288¶
-
Lome
= 6252¶
-
Luzon_1911
= 6253¶
-
M_poraloko
= 6266¶
-
Mahe_1971
= 6256¶
-
Makassar
= 6257¶
-
Malongo_1987
= 6259¶
-
Manoca
= 6260¶
-
Massawa
= 6262¶
-
Merchich
= 6261¶
-
Mhast
= 6264¶
-
Militar_Geographische_Institut
= 6312¶
-
Minna
= 6263¶
-
Monte_Mario
= 6265¶
-
NAD_Michigan
= 6268¶
-
NGO_1948
= 6273¶
-
NSWC_9Z_2
= 6276¶
-
Nahrwan_1967
= 6270¶
-
Naparima_1972
= 6271¶
-
New_Zealand_Geodetic_Datum_1949
= 6272¶
-
Nord_Sahara_1959
= 6307¶
-
Nord_de_Guerre
= 6902¶
-
North_American_Datum_1927
= 6267¶
-
North_American_Datum_1983
= 6269¶
-
Nouvelle_Triangulation_Francaise
= 6275¶
-
OSGB_1936
= 6277¶
-
OSGB_1970_SN
= 6278¶
-
OS_SN_1980
= 6279¶
-
Padang_1884
= 6280¶
-
Palestine_1923
= 6281¶
-
Pointe_Noire
= 6282¶
-
Provisional_S_American_Datum_1956
= 6248¶
-
Pulkovo_1942
= 6284¶
-
Qatar
= 6285¶
-
Qatar_1948
= 6286¶
-
Qornoq
= 6287¶
-
RT38
= 6290¶
-
Reseau_National_Belge_1950
= 6215¶
-
Reseau_National_Belge_1972
= 6313¶
-
Sapper_Hill_1943
= 6292¶
-
Schwarzeck
= 6293¶
-
Segora
= 6294¶
-
Serindung
= 6295¶
-
South_American_Datum_1969
= 6291¶
-
Stockholm_1938
= 6308¶
-
Sudan
= 6296¶
-
TM65
= 6299¶
-
TM75
= 6300¶
-
Tananarive_1925
= 6297¶
-
Timbalai_1948
= 6298¶
-
Tokyo
= 6301¶
-
Trinidad_1903
= 6302¶
-
Trucial_Coast_1948
= 6303¶
-
Undefined
= 0¶
-
User_Defined
= 32767¶
-
Voirol_1875
= 6304¶
-
Voirol_Unifie_1960
= 6305¶
-
WGS72
= 6322¶
-
WGS72_Transit_Broadcast_Ephemeris
= 6324¶
-
WGS84
= 6326¶
-
Yacare
= 6309¶
-
Yoff
= 6310¶
-
Zanderij
= 6311¶
-
-
class
tifffile.tifffile_geodb.
DatumE
¶ Bases:
enum.IntEnum
Ellipsoid-Only Geodetic Datum Codes.
-
Airy1830
= 6001¶
-
AiryModified1849
= 6002¶
-
AustralianNationalSpheroid
= 6003¶
-
Bessel1841
= 6004¶
-
BesselModified
= 6005¶
-
BesselNamibia
= 6006¶
-
Clarke1858
= 6007¶
-
Clarke1866
= 6008¶
-
Clarke1866Michigan
= 6009¶
-
Clarke1880
= 6034¶
-
Clarke1880_Arc
= 6013¶
-
Clarke1880_Benoit
= 6010¶
-
Clarke1880_IGN
= 6011¶
-
Clarke1880_RGS
= 6012¶
-
Clarke1880_SGA1922
= 6014¶
-
Everest1830Modified
= 6018¶
-
Everest1830_1937Adjustment
= 6015¶
-
Everest1830_1967Definition
= 6016¶
-
Everest1830_1975Definition
= 6017¶
-
GEM10C
= 6031¶
-
GRS1980
= 6019¶
-
Helmert1906
= 6020¶
-
IndonesianNationalSpheroid
= 6021¶
-
International1924
= 6022¶
-
International1967
= 6023¶
-
Krassowsky1960
= 6024¶
-
NWL10D
= 6026¶
-
NWL9D
= 6025¶
-
OSU86F
= 6032¶
-
OSU91A
= 6033¶
-
Plessis1817
= 6027¶
-
Sphere
= 6035¶
-
Struve1860
= 6028¶
-
Undefined
= 0¶
-
User_Defined
= 32767¶
-
WGS84
= 6030¶
-
WarOffice
= 6029¶
-
-
class
tifffile.tifffile_geodb.
Ellipse
¶ Bases:
enum.IntEnum
Ellipsoid Codes.
-
Airy_1830
= 7001¶
-
Airy_Modified_1849
= 7002¶
-
Australian_National_Spheroid
= 7003¶
-
Bessel_1841
= 7004¶
-
Bessel_Modified
= 7005¶
-
Bessel_Namibia
= 7006¶
-
Clarke_1858
= 7007¶
-
Clarke_1866
= 7008¶
-
Clarke_1866_Michigan
= 7009¶
-
Clarke_1880
= 7034¶
-
Clarke_1880_Arc
= 7013¶
-
Clarke_1880_Benoit
= 7010¶
-
Clarke_1880_IGN
= 7011¶
-
Clarke_1880_RGS
= 7012¶
-
Clarke_1880_SGA_1922
= 7014¶
-
Everest_1830_1937_Adjustment
= 7015¶
-
Everest_1830_1967_Definition
= 7016¶
-
Everest_1830_1975_Definition
= 7017¶
-
Everest_1830_Modified
= 7018¶
-
GEM_10C
= 7031¶
-
GRS_1980
= 7019¶
-
Helmert_1906
= 7020¶
-
Indonesian_National_Spheroid
= 7021¶
-
International_1924
= 7022¶
-
International_1967
= 7023¶
-
Krassowsky_1940
= 7024¶
-
NWL_10D
= 7026¶
-
NWL_9D
= 7025¶
-
OSU86F
= 7032¶
-
OSU91A
= 7033¶
-
Plessis_1817
= 7027¶
-
Sphere
= 7035¶
-
Struve_1860
= 7028¶
-
Undefined
= 0¶
-
User_Defined
= 32767¶
-
WGS_84
= 7030¶
-
War_Office
= 7029¶
-
-
class
tifffile.tifffile_geodb.
GCS
¶ Bases:
enum.IntEnum
Geographic CS Type Codes.
-
AGD66
= 4202¶
-
AGD84
= 4203¶
-
ATF_Paris
= 4901¶
-
Adindan
= 4201¶
-
Afgooye
= 4205¶
-
Agadez
= 4206¶
-
Ain_el_Abd
= 4204¶
-
Amersfoort
= 4289¶
-
Aratu
= 4208¶
-
Arc_1950
= 4209¶
-
Arc_1960
= 4210¶
-
Barbados
= 4212¶
-
Batavia
= 4211¶
-
Batavia_Jakarta
= 4813¶
-
Beduaram
= 4213¶
-
Beijing_1954
= 4214¶
-
Belge_1950
= 4215¶
-
Belge_1950_Brussels
= 4809¶
-
Belge_1972
= 4313¶
-
Bermuda_1957
= 4216¶
-
Bern_1898
= 4217¶
-
Bern_1898_Bern
= 4801¶
-
Bern_1938
= 4306¶
-
Bogota
= 4218¶
-
Bogota_Bogota
= 4802¶
-
Bukit_Rimpah
= 4219¶
-
Camacupa
= 4220¶
-
Campo_Inchauspe
= 4221¶
-
Cape
= 4222¶
-
Carthage
= 4223¶
-
Chua
= 4224¶
-
Conakry_1905
= 4315¶
-
Corrego_Alegre
= 4225¶
-
Cote_d_Ivoire
= 4226¶
-
DHDN
= 4314¶
-
Datum_73
= 4274¶
-
Dealul_Piscului_1970
= 4317¶
-
Deir_ez_Zor
= 4227¶
-
Douala
= 4228¶
-
ED50
= 4230¶
-
ED87
= 4231¶
-
EST92
= 4133¶
-
EUREF89
= 4258¶
-
Egypt_1907
= 4229¶
-
Fahud
= 4232¶
-
GD49
= 4272¶
-
GDA94
= 4283¶
-
GGRS87
= 4121¶
-
Gandajika_1970
= 4233¶
-
Garoua
= 4234¶
-
Greek
= 4120¶
-
Greek_Athens
= 4815¶
-
Guyane_Francaise
= 4235¶
-
HD72
= 4237¶
-
Herat_North
= 4255¶
-
Hito_XVIII_1963
= 4254¶
-
Hu_Tzu_Shan
= 4236¶
-
ID74
= 4238¶
-
Indian_1954
= 4239¶
-
Indian_1975
= 4240¶
-
JAD69
= 4242¶
-
Jamaica_1875
= 4241¶
-
KKJ
= 4123¶
-
KOC
= 4246¶
-
Kalianpur
= 4243¶
-
Kandawala
= 4244¶
-
Kertau
= 4245¶
-
La_Canoa
= 4247¶
-
Lake
= 4249¶
-
Leigon
= 4250¶
-
Liberia_1964
= 4251¶
-
Lisbon
= 4207¶
-
Lisbon_Lisbon
= 4803¶
-
Loma_Quintana
= 4288¶
-
Lome
= 4252¶
-
Luzon_1911
= 4253¶
-
MGI
= 4312¶
-
MGI_Ferro
= 4805¶
-
M_poraloko
= 4266¶
-
Mahe_1971
= 4256¶
-
Makassar
= 4257¶
-
Makassar_Jakarta
= 4804¶
-
Malongo_1987
= 4259¶
-
Manoca
= 4260¶
-
Massawa
= 4262¶
-
Merchich
= 4261¶
-
Mhast
= 4264¶
-
Minna
= 4263¶
-
Monte_Mario
= 4265¶
-
Monte_Mario_Rome
= 4806¶
-
NAD27
= 4267¶
-
NAD83
= 4269¶
-
NAD_Michigan
= 4268¶
-
NDG_Paris
= 4902¶
-
NGO_1948
= 4273¶
-
NSWC_9Z_2
= 4276¶
-
NTF
= 4275¶
-
NTF_Paris
= 4807¶
-
Nahrwan_1967
= 4270¶
-
Naparima_1972
= 4271¶
-
Nord_Sahara_1959
= 4307¶
-
OSGB70
= 4278¶
-
OSGB_1936
= 4277¶
-
OS_SN80
= 4279¶
-
PSAD56
= 4248¶
-
Padang
= 4280¶
-
Padang_Jakarta
= 4808¶
-
Palestine_1923
= 4281¶
-
Pointe_Noire
= 4282¶
-
Pulkovo_1942
= 4284¶
-
Qatar
= 4285¶
-
Qatar_1948
= 4286¶
-
Qornoq
= 4287¶
-
RT38
= 4290¶
-
RT90
= 4124¶
-
SAD69
= 4291¶
-
Sapper_Hill_1943
= 4292¶
-
Schwarzeck
= 4293¶
-
Segora
= 4294¶
-
Serindung
= 4295¶
-
Stockholm_1938
= 4308¶
-
Sudan
= 4296¶
-
TC_1948
= 4303¶
-
TM65
= 4299¶
-
TM75
= 4300¶
-
Tananarive
= 4297¶
-
Tananarive_Paris
= 4810¶
-
Timbalai_1948
= 4298¶
-
Tokyo
= 4301¶
-
Trinidad_1903
= 4302¶
-
Undefined
= 0¶
-
User_Defined
= 32767¶
-
Voirol_1875
= 4304¶
-
Voirol_1875_Paris
= 4811¶
-
Voirol_Unifie
= 4305¶
-
Voirol_Unifie_Paris
= 4812¶
-
WGS_72
= 4322¶
-
WGS_72BE
= 4324¶
-
WGS_84
= 4326¶
-
Yacare
= 4309¶
-
Yoff
= 4310¶
-
Zanderij
= 4311¶
-
-
class
tifffile.tifffile_geodb.
GCSE
¶ Bases:
enum.IntEnum
Unspecified GCS based on ellipsoid.
-
Airy1830
= 4001¶
-
AiryModified1849
= 4002¶
-
AustralianNationalSpheroid
= 4003¶
-
Bessel1841
= 4004¶
-
BesselModified
= 4005¶
-
BesselNamibia
= 4006¶
-
Clarke1858
= 4007¶
-
Clarke1866
= 4008¶
-
Clarke1866Michigan
= 4009¶
-
Clarke1880
= 4034¶
-
Clarke1880_Arc
= 4013¶
-
Clarke1880_Benoit
= 4010¶
-
Clarke1880_IGN
= 4011¶
-
Clarke1880_RGS
= 4012¶
-
Clarke1880_SGA1922
= 4014¶
-
Everest1830Modified
= 4018¶
-
Everest1830_1937Adjustment
= 4015¶
-
Everest1830_1967Definition
= 4016¶
-
Everest1830_1975Definition
= 4017¶
-
GEM10C
= 4031¶
-
GRS1980
= 4019¶
-
Helmert1906
= 4020¶
-
IndonesianNationalSpheroid
= 4021¶
-
International1924
= 4022¶
-
International1967
= 4023¶
-
Krassowsky1940
= 4024¶
-
NWL10D
= 4026¶
-
NWL9D
= 4025¶
-
OSU86F
= 4032¶
-
OSU91A
= 4033¶
-
Plessis1817
= 4027¶
-
Sphere
= 4035¶
-
Struve1860
= 4028¶
-
Undefined
= 0¶
-
User_Defined
= 32767¶
-
WGS84
= 4030¶
-
WarOffice
= 4029¶
-
-
class
tifffile.tifffile_geodb.
Linear
¶ Bases:
enum.IntEnum
Linear Units.
-
Chain_Benoit
= 9010¶
-
Chain_Sears
= 9011¶
-
Fathom
= 9014¶
-
Foot
= 9002¶
-
Foot_Clarke
= 9005¶
-
Foot_Indian
= 9006¶
-
Foot_Modified_American
= 9004¶
-
Foot_US_Survey
= 9003¶
-
Link
= 9007¶
-
Link_Benoit
= 9008¶
-
Link_Sears
= 9009¶
-
Meter
= 9001¶
-
Mile_International_Nautical
= 9015¶
-
Undefined
= 0¶
-
User_Defined
= 32767¶
-
Yard_Indian
= 9013¶
-
Yard_Sears
= 9012¶
-
-
class
tifffile.tifffile_geodb.
ModelType
¶ Bases:
enum.IntEnum
Model Type Codes.
-
Geocentric
= 3¶
-
Geographic
= 2¶
-
Projected
= 1¶
-
Undefined
= 0¶
-
User_Defined
= 32767¶
-
-
class
tifffile.tifffile_geodb.
PCS
¶ Bases:
enum.IntEnum
Projected CS Type Codes.
-
AGD66_AMG_zone_48
= 20248¶
-
AGD66_AMG_zone_49
= 20249¶
-
AGD66_AMG_zone_50
= 20250¶
-
AGD66_AMG_zone_51
= 20251¶
-
AGD66_AMG_zone_52
= 20252¶
-
AGD66_AMG_zone_53
= 20253¶
-
AGD66_AMG_zone_54
= 20254¶
-
AGD66_AMG_zone_55
= 20255¶
-
AGD66_AMG_zone_56
= 20256¶
-
AGD66_AMG_zone_57
= 20257¶
-
AGD66_AMG_zone_58
= 20258¶
-
AGD84_AMG_zone_48
= 20348¶
-
AGD84_AMG_zone_49
= 20349¶
-
AGD84_AMG_zone_50
= 20350¶
-
AGD84_AMG_zone_51
= 20351¶
-
AGD84_AMG_zone_52
= 20352¶
-
AGD84_AMG_zone_53
= 20353¶
-
AGD84_AMG_zone_54
= 20354¶
-
AGD84_AMG_zone_55
= 20355¶
-
AGD84_AMG_zone_56
= 20356¶
-
AGD84_AMG_zone_57
= 20357¶
-
AGD84_AMG_zone_58
= 20358¶
-
ATF_Nord_de_Guerre
= 27500¶
-
Adindan_UTM_zone_37N
= 20137¶
-
Adindan_UTM_zone_38N
= 20138¶
-
Afgooye_UTM_zone_38N
= 20538¶
-
Afgooye_UTM_zone_39N
= 20539¶
-
Ain_el_Abd_Bahrain_Grid
= 20499¶
-
Ain_el_Abd_UTM_zone_37N
= 20437¶
-
Ain_el_Abd_UTM_zone_38N
= 20438¶
-
Ain_el_Abd_UTM_zone_39N
= 20439¶
-
Aratu_UTM_zone_22S
= 20822¶
-
Aratu_UTM_zone_23S
= 20823¶
-
Aratu_UTM_zone_24S
= 20824¶
-
Arc_1950_Lo13
= 20973¶
-
Arc_1950_Lo15
= 20975¶
-
Arc_1950_Lo17
= 20977¶
-
Arc_1950_Lo19
= 20979¶
-
Arc_1950_Lo21
= 20981¶
-
Arc_1950_Lo23
= 20983¶
-
Arc_1950_Lo25
= 20985¶
-
Arc_1950_Lo27
= 20987¶
-
Arc_1950_Lo29
= 20989¶
-
Arc_1950_Lo31
= 20991¶
-
Arc_1950_Lo33
= 20993¶
-
Arc_1950_Lo35
= 20995¶
-
Batavia_NEIEZ
= 21100¶
-
Batavia_UTM_zone_48S
= 21148¶
-
Batavia_UTM_zone_49S
= 21149¶
-
Batavia_UTM_zone_50S
= 21150¶
-
Beijing_Gauss_13N
= 21473¶
-
Beijing_Gauss_14N
= 21474¶
-
Beijing_Gauss_15N
= 21475¶
-
Beijing_Gauss_16N
= 21476¶
-
Beijing_Gauss_17N
= 21477¶
-
Beijing_Gauss_18N
= 21478¶
-
Beijing_Gauss_19N
= 21479¶
-
Beijing_Gauss_20N
= 21480¶
-
Beijing_Gauss_21N
= 21481¶
-
Beijing_Gauss_22N
= 21482¶
-
Beijing_Gauss_23N
= 21483¶
-
Beijing_Gauss_zone_13
= 21413¶
-
Beijing_Gauss_zone_14
= 21414¶
-
Beijing_Gauss_zone_15
= 21415¶
-
Beijing_Gauss_zone_16
= 21416¶
-
Beijing_Gauss_zone_17
= 21417¶
-
Beijing_Gauss_zone_18
= 21418¶
-
Beijing_Gauss_zone_19
= 21419¶
-
Beijing_Gauss_zone_20
= 21420¶
-
Beijing_Gauss_zone_21
= 21421¶
-
Beijing_Gauss_zone_22
= 21422¶
-
Beijing_Gauss_zone_23
= 21423¶
-
Belge_Lambert_50
= 21500¶
-
Belge_Lambert_72
= 31300¶
-
Bern_1898_Swiss_Old
= 21790¶
-
Bern_1938_Swiss_New
= 30600¶
-
Bogota_Colombia_3E
= 21893¶
-
Bogota_Colombia_3W
= 21891¶
-
Bogota_Colombia_6E
= 21894¶
-
Bogota_Colombia_Bogota
= 21892¶
-
Bogota_UTM_zone_17N
= 21817¶
-
Bogota_UTM_zone_18N
= 21818¶
-
British_National_Grid
= 27700¶
-
C_Inchauspe_Argentina_1
= 22191¶
-
C_Inchauspe_Argentina_2
= 22192¶
-
C_Inchauspe_Argentina_3
= 22193¶
-
C_Inchauspe_Argentina_4
= 22194¶
-
C_Inchauspe_Argentina_5
= 22195¶
-
C_Inchauspe_Argentina_6
= 22196¶
-
C_Inchauspe_Argentina_7
= 22197¶
-
Camacupa_UTM_32S
= 22032¶
-
Camacupa_UTM_33S
= 22033¶
-
Carthage_Nord_Tunisie
= 22391¶
-
Carthage_Sud_Tunisie
= 22392¶
-
Carthage_UTM_zone_32N
= 22332¶
-
Corrego_Alegre_UTM_23S
= 22523¶
-
Corrego_Alegre_UTM_24S
= 22524¶
-
DHDN_Germany_zone_1
= 31491¶
-
DHDN_Germany_zone_2
= 31492¶
-
DHDN_Germany_zone_3
= 31493¶
-
DHDN_Germany_zone_4
= 31494¶
-
DHDN_Germany_zone_5
= 31495¶
-
Datum_73_UTM_zone_29N
= 27429¶
-
Dealul_Piscului_1970_Stereo_70
= 31700¶
-
Douala_UTM_zone_32N
= 22832¶
-
ED50_UTM_zone_28N
= 23028¶
-
ED50_UTM_zone_29N
= 23029¶
-
ED50_UTM_zone_30N
= 23030¶
-
ED50_UTM_zone_31N
= 23031¶
-
ED50_UTM_zone_32N
= 23032¶
-
ED50_UTM_zone_33N
= 23033¶
-
ED50_UTM_zone_34N
= 23034¶
-
ED50_UTM_zone_35N
= 23035¶
-
ED50_UTM_zone_36N
= 23036¶
-
ED50_UTM_zone_37N
= 23037¶
-
ED50_UTM_zone_38N
= 23038¶
-
ETRS89_Poland_CS2000_zone_5
= 2176¶
-
ETRS89_Poland_CS2000_zone_6
= 2177¶
-
ETRS89_Poland_CS2000_zone_7
= 2177¶
-
ETRS89_Poland_CS2000_zone_8
= 2178¶
-
ETRS89_Poland_CS92
= 2180¶
-
Egypt_1907_Ext_Purple
= 22994¶
-
Egypt_1907_Purple_Belt
= 22993¶
-
Egypt_1907_Red_Belt
= 22992¶
-
Estonian_Coordinate_System_of_1992
= 3300¶
-
Fahud_UTM_zone_39N
= 23239¶
-
Fahud_UTM_zone_40N
= 23240¶
-
GD49_NZ_Map_Grid
= 27200¶
-
GD49_North_Island_Grid
= 27291¶
-
GD49_South_Island_Grid
= 27292¶
-
GDA94_MGA_zone_48
= 28348¶
-
GDA94_MGA_zone_49
= 28349¶
-
GDA94_MGA_zone_50
= 28350¶
-
GDA94_MGA_zone_51
= 28351¶
-
GDA94_MGA_zone_52
= 28352¶
-
GDA94_MGA_zone_53
= 28353¶
-
GDA94_MGA_zone_54
= 28354¶
-
GDA94_MGA_zone_55
= 28355¶
-
GDA94_MGA_zone_56
= 28356¶
-
GDA94_MGA_zone_57
= 28357¶
-
GDA94_MGA_zone_58
= 28358¶
-
GGRS87_Greek_Grid
= 2100¶
-
Garoua_UTM_zone_33N
= 23433¶
-
HD72_EOV
= 23700¶
-
Hjorsey_1955_Lambert
= 3053¶
-
ID74_UTM_zone_46N
= 23846¶
-
ID74_UTM_zone_46S
= 23886¶
-
ID74_UTM_zone_47N
= 23847¶
-
ID74_UTM_zone_47S
= 23887¶
-
ID74_UTM_zone_48N
= 23848¶
-
ID74_UTM_zone_48S
= 23888¶
-
ID74_UTM_zone_49N
= 23849¶
-
ID74_UTM_zone_49S
= 23889¶
-
ID74_UTM_zone_50N
= 23850¶
-
ID74_UTM_zone_50S
= 23890¶
-
ID74_UTM_zone_51N
= 23851¶
-
ID74_UTM_zone_51S
= 23891¶
-
ID74_UTM_zone_52N
= 23852¶
-
ID74_UTM_zone_52S
= 23892¶
-
ID74_UTM_zone_53N
= 23853¶
-
ID74_UTM_zone_53S
= 23893¶
-
ID74_UTM_zone_54S
= 23894¶
-
ISN93_Lambert_1993
= 3057¶
-
Indian_1954_UTM_47N
= 23947¶
-
Indian_1954_UTM_48N
= 23948¶
-
Indian_1975_UTM_47N
= 24047¶
-
Indian_1975_UTM_48N
= 24048¶
-
JAD69_Jamaica_Grid
= 24200¶
-
Jamaica_1875_Old_Grid
= 24100¶
-
KKJ_Finland_zone_1
= 2391¶
-
KKJ_Finland_zone_2
= 2392¶
-
KKJ_Finland_zone_3
= 2393¶
-
KKJ_Finland_zone_4
= 2394¶
-
Kalianpur_India_0
= 24370¶
-
Kalianpur_India_I
= 24371¶
-
Kalianpur_India_IIIa
= 24373¶
-
Kalianpur_India_IIIb
= 24383¶
-
Kalianpur_India_IIa
= 24372¶
-
Kalianpur_India_IIb
= 24382¶
-
Kalianpur_India_IVa
= 24374¶
-
Kalianpur_India_IVb
= 24384¶
-
Kertau_Singapore_Grid
= 24500¶
-
Kertau_UTM_zone_47N
= 24547¶
-
Kertau_UTM_zone_48N
= 24548¶
-
La_Canoa_UTM_zone_20N
= 24720¶
-
La_Canoa_UTM_zone_21N
= 24721¶
-
Leigon_Ghana_Grid
= 25000¶
-
Lietuvos_Koordinoei_Sistema_1994
= 2600¶
-
Lisbon_Portugese_Grid
= 20700¶
-
Lome_UTM_zone_31N
= 25231¶
-
Luzon_Philippines_I
= 25391¶
-
Luzon_Philippines_II
= 25392¶
-
Luzon_Philippines_III
= 25393¶
-
Luzon_Philippines_IV
= 25394¶
-
Luzon_Philippines_V
= 25395¶
-
MGI_Austria_Central
= 31292¶
-
MGI_Austria_East
= 31293¶
-
MGI_Austria_West
= 31291¶
-
M_poraloko_UTM_32N
= 26632¶
-
M_poraloko_UTM_32S
= 26692¶
-
Makassar_NEIEZ
= 25700¶
-
Malongo_1987_UTM_32S
= 25932¶
-
Massawa_UTM_zone_37N
= 26237¶
-
Merchich_Nord_Maroc
= 26191¶
-
Merchich_Sahara
= 26193¶
-
Merchich_Sud_Maroc
= 26192¶
-
Mhast_UTM_zone_32S
= 26432¶
-
Minna_Nigeria_East
= 26393¶
-
Minna_Nigeria_Mid_Belt
= 26392¶
-
Minna_Nigeria_West
= 26391¶
-
Minna_UTM_zone_31N
= 26331¶
-
Minna_UTM_zone_32N
= 26332¶
-
Monte_Mario_Italy_1
= 26591¶
-
Monte_Mario_Italy_2
= 26592¶
-
NAD27_Alabama_East
= 26729¶
-
NAD27_Alabama_West
= 26730¶
-
NAD27_Alaska_zone_1
= 26731¶
-
NAD27_Alaska_zone_10
= 26740¶
-
NAD27_Alaska_zone_2
= 26732¶
-
NAD27_Alaska_zone_3
= 26733¶
-
NAD27_Alaska_zone_4
= 26734¶
-
NAD27_Alaska_zone_5
= 26735¶
-
NAD27_Alaska_zone_6
= 26736¶
-
NAD27_Alaska_zone_7
= 26737¶
-
NAD27_Alaska_zone_8
= 26738¶
-
NAD27_Alaska_zone_9
= 26739¶
-
NAD27_Arizona_Central
= 26749¶
-
NAD27_Arizona_East
= 26748¶
-
NAD27_Arizona_West
= 26750¶
-
NAD27_Arkansas_North
= 26751¶
-
NAD27_Arkansas_South
= 26752¶
-
NAD27_BLM_14N_feet
= 26774¶
-
NAD27_BLM_15N_feet
= 26775¶
-
NAD27_BLM_16N_feet
= 26776¶
-
NAD27_BLM_17N_feet
= 26777¶
-
NAD27_California_I
= 26741¶
-
NAD27_California_II
= 26742¶
-
NAD27_California_III
= 26743¶
-
NAD27_California_IV
= 26744¶
-
NAD27_California_V
= 26745¶
-
NAD27_California_VI
= 26746¶
-
NAD27_California_VII
= 26747¶
-
NAD27_Colorado_Central
= 26754¶
-
NAD27_Colorado_North
= 26753¶
-
NAD27_Colorado_South
= 26755¶
-
NAD27_Connecticut
= 26756¶
-
NAD27_Delaware
= 26757¶
-
NAD27_Florida_East
= 26758¶
-
NAD27_Florida_North
= 26760¶
-
NAD27_Florida_West
= 26759¶
-
NAD27_Georgia_East
= 26766¶
-
NAD27_Georgia_West
= 26767¶
-
NAD27_Hawaii_zone_1
= 26761¶
-
NAD27_Hawaii_zone_2
= 26762¶
-
NAD27_Hawaii_zone_3
= 26763¶
-
NAD27_Hawaii_zone_4
= 26764¶
-
NAD27_Hawaii_zone_5
= 26765¶
-
NAD27_Idaho_Central
= 26769¶
-
NAD27_Idaho_East
= 26768¶
-
NAD27_Idaho_West
= 26770¶
-
NAD27_Illinois_East
= 26771¶
-
NAD27_Illinois_West
= 26772¶
-
NAD27_Indiana_East
= 26773¶
-
NAD27_Indiana_West
= 26774¶
-
NAD27_Iowa_North
= 26775¶
-
NAD27_Iowa_South
= 26776¶
-
NAD27_Kansas_North
= 26777¶
-
NAD27_Kansas_South
= 26778¶
-
NAD27_Kentucky_North
= 26779¶
-
NAD27_Kentucky_South
= 26780¶
-
NAD27_Louisiana_North
= 26781¶
-
NAD27_Louisiana_South
= 26782¶
-
NAD27_Maine_East
= 26783¶
-
NAD27_Maine_West
= 26784¶
-
NAD27_Maryland
= 26785¶
-
NAD27_Massachusetts
= 26786¶
-
NAD27_Massachusetts_Is
= 26787¶
-
NAD27_Michigan_Central
= 26789¶
-
NAD27_Michigan_North
= 26788¶
-
NAD27_Michigan_South
= 26790¶
-
NAD27_Minnesota_Cent
= 26792¶
-
NAD27_Minnesota_North
= 26791¶
-
NAD27_Minnesota_South
= 26793¶
-
NAD27_Mississippi_East
= 26794¶
-
NAD27_Mississippi_West
= 26795¶
-
NAD27_Missouri_Central
= 26797¶
-
NAD27_Missouri_East
= 26796¶
-
NAD27_Missouri_West
= 26798¶
-
NAD27_Montana_Central
= 32002¶
-
NAD27_Montana_North
= 32001¶
-
NAD27_Montana_South
= 32003¶
-
NAD27_Nebraska_North
= 32005¶
-
NAD27_Nebraska_South
= 32006¶
-
NAD27_Nevada_Central
= 32008¶
-
NAD27_Nevada_East
= 32007¶
-
NAD27_Nevada_West
= 32009¶
-
NAD27_New_Hampshire
= 32010¶
-
NAD27_New_Jersey
= 32011¶
-
NAD27_New_Mexico_Cent
= 32013¶
-
NAD27_New_Mexico_East
= 32012¶
-
NAD27_New_Mexico_West
= 32014¶
-
NAD27_New_York_Central
= 32016¶
-
NAD27_New_York_East
= 32015¶
-
NAD27_New_York_Long_Is
= 32018¶
-
NAD27_New_York_West
= 32017¶
-
NAD27_North_Carolina
= 32019¶
-
NAD27_North_Dakota_N
= 32020¶
-
NAD27_North_Dakota_S
= 32021¶
-
NAD27_Ohio_North
= 32022¶
-
NAD27_Ohio_South
= 32023¶
-
NAD27_Oklahoma_North
= 32024¶
-
NAD27_Oklahoma_South
= 32025¶
-
NAD27_Oregon_North
= 32026¶
-
NAD27_Oregon_South
= 32027¶
-
NAD27_Pennsylvania_N
= 32028¶
-
NAD27_Pennsylvania_S
= 32029¶
-
NAD27_Puerto_Rico
= 32059¶
-
NAD27_Rhode_Island
= 32030¶
-
NAD27_South_Carolina_N
= 32031¶
-
NAD27_South_Carolina_S
= 32033¶
-
NAD27_South_Dakota_N
= 32034¶
-
NAD27_South_Dakota_S
= 32035¶
-
NAD27_St_Croix
= 32060¶
-
NAD27_Tennessee
= 2204¶
-
NAD27_Texas_Central
= 32039¶
-
NAD27_Texas_North
= 32037¶
-
NAD27_Texas_North_Cen
= 32038¶
-
NAD27_Texas_South
= 32041¶
-
NAD27_Texas_South_Cen
= 32040¶
-
NAD27_UTM_zone_10N
= 26710¶
-
NAD27_UTM_zone_11N
= 26711¶
-
NAD27_UTM_zone_12N
= 26712¶
-
NAD27_UTM_zone_13N
= 26713¶
-
NAD27_UTM_zone_14N
= 26714¶
-
NAD27_UTM_zone_15N
= 26715¶
-
NAD27_UTM_zone_16N
= 26716¶
-
NAD27_UTM_zone_17N
= 26717¶
-
NAD27_UTM_zone_18N
= 26718¶
-
NAD27_UTM_zone_19N
= 26719¶
-
NAD27_UTM_zone_20N
= 26720¶
-
NAD27_UTM_zone_21N
= 26721¶
-
NAD27_UTM_zone_22N
= 26722¶
-
NAD27_UTM_zone_3N
= 26703¶
-
NAD27_UTM_zone_4N
= 26704¶
-
NAD27_UTM_zone_5N
= 26705¶
-
NAD27_UTM_zone_6N
= 26706¶
-
NAD27_UTM_zone_7N
= 26707¶
-
NAD27_UTM_zone_8N
= 26708¶
-
NAD27_UTM_zone_9N
= 26709¶
-
NAD27_Utah_Central
= 32043¶
-
NAD27_Utah_North
= 32042¶
-
NAD27_Utah_South
= 32044¶
-
NAD27_Vermont
= 32045¶
-
NAD27_Virginia_North
= 32046¶
-
NAD27_Virginia_South
= 32047¶
-
NAD27_Washington_North
= 32048¶
-
NAD27_Washington_South
= 32049¶
-
NAD27_West_Virginia_N
= 32050¶
-
NAD27_West_Virginia_S
= 32051¶
-
NAD27_Wisconsin_Cen
= 32053¶
-
NAD27_Wisconsin_North
= 32052¶
-
NAD27_Wisconsin_South
= 32054¶
-
NAD27_Wyoming_E_Cen
= 32056¶
-
NAD27_Wyoming_East
= 32055¶
-
NAD27_Wyoming_W_Cen
= 32057¶
-
NAD27_Wyoming_West
= 32058¶
-
NAD83_Alabama_East
= 26929¶
-
NAD83_Alabama_West
= 26930¶
-
NAD83_Alaska_zone_1
= 26931¶
-
NAD83_Alaska_zone_10
= 26940¶
-
NAD83_Alaska_zone_2
= 26932¶
-
NAD83_Alaska_zone_3
= 26933¶
-
NAD83_Alaska_zone_4
= 26934¶
-
NAD83_Alaska_zone_5
= 26935¶
-
NAD83_Alaska_zone_6
= 26936¶
-
NAD83_Alaska_zone_7
= 26937¶
-
NAD83_Alaska_zone_8
= 26938¶
-
NAD83_Alaska_zone_9
= 26939¶
-
NAD83_Arizona_Central
= 26949¶
-
NAD83_Arizona_East
= 26948¶
-
NAD83_Arizona_West
= 26950¶
-
NAD83_Arkansas_North
= 26951¶
-
NAD83_Arkansas_South
= 26952¶
-
NAD83_California_1
= 26941¶
-
NAD83_California_2
= 26942¶
-
NAD83_California_3
= 26943¶
-
NAD83_California_4
= 26944¶
-
NAD83_California_5
= 26945¶
-
NAD83_California_6
= 26946¶
-
NAD83_Colorado_Central
= 26954¶
-
NAD83_Colorado_North
= 26953¶
-
NAD83_Colorado_South
= 26955¶
-
NAD83_Connecticut
= 26956¶
-
NAD83_Delaware
= 26957¶
-
NAD83_Florida_East
= 26958¶
-
NAD83_Florida_North
= 26960¶
-
NAD83_Florida_West
= 26959¶
-
NAD83_Georgia_East
= 26966¶
-
NAD83_Georgia_West
= 26967¶
-
NAD83_Hawaii_zone_1
= 26961¶
-
NAD83_Hawaii_zone_2
= 26962¶
-
NAD83_Hawaii_zone_3
= 26963¶
-
NAD83_Hawaii_zone_4
= 26964¶
-
NAD83_Hawaii_zone_5
= 26965¶
-
NAD83_Idaho_Central
= 26969¶
-
NAD83_Idaho_East
= 26968¶
-
NAD83_Idaho_West
= 26970¶
-
NAD83_Illinois_East
= 26971¶
-
NAD83_Illinois_West
= 26972¶
-
NAD83_Indiana_East
= 26973¶
-
NAD83_Indiana_West
= 26974¶
-
NAD83_Iowa_North
= 26975¶
-
NAD83_Iowa_South
= 26976¶
-
NAD83_Kansas_North
= 26977¶
-
NAD83_Kansas_South
= 26978¶
-
NAD83_Kentucky_North
= 2205¶
-
NAD83_Kentucky_South
= 26980¶
-
NAD83_Louisiana_North
= 26981¶
-
NAD83_Louisiana_South
= 26982¶
-
NAD83_Maine_East
= 26983¶
-
NAD83_Maine_West
= 26984¶
-
NAD83_Maryland
= 26985¶
-
NAD83_Massachusetts
= 26986¶
-
NAD83_Massachusetts_Is
= 26987¶
-
NAD83_Michigan_Central
= 26989¶
-
NAD83_Michigan_North
= 26988¶
-
NAD83_Michigan_South
= 26990¶
-
NAD83_Minnesota_Cent
= 26992¶
-
NAD83_Minnesota_North
= 26991¶
-
NAD83_Minnesota_South
= 26993¶
-
NAD83_Mississippi_East
= 26994¶
-
NAD83_Mississippi_West
= 26995¶
-
NAD83_Missouri_Central
= 26997¶
-
NAD83_Missouri_East
= 26996¶
-
NAD83_Missouri_West
= 26998¶
-
NAD83_Montana
= 32100¶
-
NAD83_Nebraska
= 32104¶
-
NAD83_Nevada_Central
= 32108¶
-
NAD83_Nevada_East
= 32107¶
-
NAD83_Nevada_West
= 32109¶
-
NAD83_New_Hampshire
= 32110¶
-
NAD83_New_Jersey
= 32111¶
-
NAD83_New_Mexico_Cent
= 32113¶
-
NAD83_New_Mexico_East
= 32112¶
-
NAD83_New_Mexico_West
= 32114¶
-
NAD83_New_York_Central
= 32116¶
-
NAD83_New_York_East
= 32115¶
-
NAD83_New_York_Long_Is
= 32118¶
-
NAD83_New_York_West
= 32117¶
-
NAD83_North_Carolina
= 32119¶
-
NAD83_North_Dakota_N
= 32120¶
-
NAD83_North_Dakota_S
= 32121¶
-
NAD83_Ohio_North
= 32122¶
-
NAD83_Ohio_South
= 32123¶
-
NAD83_Oklahoma_North
= 32124¶
-
NAD83_Oklahoma_South
= 32125¶
-
NAD83_Oregon_North
= 32126¶
-
NAD83_Oregon_South
= 32127¶
-
NAD83_Pennsylvania_N
= 32128¶
-
NAD83_Pennsylvania_S
= 32129¶
-
NAD83_Puerto_Rico_Virgin_Is
= 32161¶
-
NAD83_Rhode_Island
= 32130¶
-
NAD83_South_Carolina
= 32133¶
-
NAD83_South_Dakota_N
= 32134¶
-
NAD83_South_Dakota_S
= 32135¶
-
NAD83_Tennessee
= 32136¶
-
NAD83_Texas_Central
= 32139¶
-
NAD83_Texas_North
= 32137¶
-
NAD83_Texas_North_Cen
= 32138¶
-
NAD83_Texas_South
= 32141¶
-
NAD83_Texas_South_Cen
= 32140¶
-
NAD83_UTM_zone_10N
= 26910¶
-
NAD83_UTM_zone_11N
= 26911¶
-
NAD83_UTM_zone_12N
= 26912¶
-
NAD83_UTM_zone_13N
= 26913¶
-
NAD83_UTM_zone_14N
= 26914¶
-
NAD83_UTM_zone_15N
= 26915¶
-
NAD83_UTM_zone_16N
= 26916¶
-
NAD83_UTM_zone_17N
= 26917¶
-
NAD83_UTM_zone_18N
= 26918¶
-
NAD83_UTM_zone_19N
= 26919¶
-
NAD83_UTM_zone_20N
= 26920¶
-
NAD83_UTM_zone_21N
= 26921¶
-
NAD83_UTM_zone_22N
= 26922¶
-
NAD83_UTM_zone_23N
= 26923¶
-
NAD83_UTM_zone_3N
= 26903¶
-
NAD83_UTM_zone_4N
= 26904¶
-
NAD83_UTM_zone_5N
= 26905¶
-
NAD83_UTM_zone_6N
= 26906¶
-
NAD83_UTM_zone_7N
= 26907¶
-
NAD83_UTM_zone_8N
= 26908¶
-
NAD83_UTM_zone_9N
= 26909¶
-
NAD83_Utah_Central
= 32143¶
-
NAD83_Utah_North
= 32142¶
-
NAD83_Utah_South
= 32144¶
-
NAD83_Vermont
= 32145¶
-
NAD83_Virginia_North
= 32146¶
-
NAD83_Virginia_South
= 32147¶
-
NAD83_Washington_North
= 32148¶
-
NAD83_Washington_South
= 32149¶
-
NAD83_West_Virginia_N
= 32150¶
-
NAD83_West_Virginia_S
= 32151¶
-
NAD83_Wisconsin_Cen
= 32153¶
-
NAD83_Wisconsin_North
= 32152¶
-
NAD83_Wisconsin_South
= 32154¶
-
NAD83_Wyoming_E_Cen
= 32156¶
-
NAD83_Wyoming_East
= 32155¶
-
NAD83_Wyoming_W_Cen
= 32157¶
-
NAD83_Wyoming_West
= 32158¶
-
NAD_Michigan_Michigan_East
= 26801¶
-
NAD_Michigan_Michigan_Old_Central
= 26802¶
-
NAD_Michigan_Michigan_West
= 26803¶
-
NTF_Centre_France
= 27592¶
-
NTF_France_I
= 27581¶
-
NTF_France_II
= 27582¶
-
NTF_France_III
= 27583¶
-
NTF_Nord_France
= 27591¶
-
NTF_Sud_France
= 27593¶
-
Nahrwan_1967_UTM_38N
= 27038¶
-
Nahrwan_1967_UTM_39N
= 27039¶
-
Nahrwan_1967_UTM_40N
= 27040¶
-
Naparima_UTM_20N
= 27120¶
-
Nord_Sahara_UTM_29N
= 30729¶
-
Nord_Sahara_UTM_30N
= 30730¶
-
Nord_Sahara_UTM_31N
= 30731¶
-
Nord_Sahara_UTM_32N
= 30732¶
-
PSAD56_Peru_central
= 24892¶
-
PSAD56_Peru_east_zone
= 24893¶
-
PSAD56_Peru_west_zone
= 24891¶
-
PSAD56_UTM_zone_17S
= 24877¶
-
PSAD56_UTM_zone_18N
= 24818¶
-
PSAD56_UTM_zone_18S
= 24878¶
-
PSAD56_UTM_zone_19N
= 24819¶
-
PSAD56_UTM_zone_19S
= 24879¶
-
PSAD56_UTM_zone_20N
= 24820¶
-
PSAD56_UTM_zone_20S
= 24880¶
-
PSAD56_UTM_zone_21N
= 24821¶
-
Point_Noire_UTM_32S
= 28232¶
-
Pulkovo_Gauss_10N
= 28470¶
-
Pulkovo_Gauss_11N
= 28471¶
-
Pulkovo_Gauss_12N
= 28472¶
-
Pulkovo_Gauss_13N
= 28473¶
-
Pulkovo_Gauss_14N
= 28474¶
-
Pulkovo_Gauss_15N
= 28475¶
-
Pulkovo_Gauss_16N
= 28476¶
-
Pulkovo_Gauss_17N
= 28477¶
-
Pulkovo_Gauss_18N
= 28478¶
-
Pulkovo_Gauss_19N
= 28479¶
-
Pulkovo_Gauss_20N
= 28480¶
-
Pulkovo_Gauss_21N
= 28481¶
-
Pulkovo_Gauss_22N
= 28482¶
-
Pulkovo_Gauss_23N
= 28483¶
-
Pulkovo_Gauss_24N
= 28484¶
-
Pulkovo_Gauss_25N
= 28485¶
-
Pulkovo_Gauss_26N
= 28486¶
-
Pulkovo_Gauss_27N
= 28487¶
-
Pulkovo_Gauss_28N
= 28488¶
-
Pulkovo_Gauss_29N
= 28489¶
-
Pulkovo_Gauss_30N
= 28490¶
-
Pulkovo_Gauss_31N
= 28491¶
-
Pulkovo_Gauss_32N
= 28492¶
-
Pulkovo_Gauss_4N
= 28464¶
-
Pulkovo_Gauss_5N
= 28465¶
-
Pulkovo_Gauss_6N
= 28466¶
-
Pulkovo_Gauss_7N
= 28467¶
-
Pulkovo_Gauss_8N
= 28468¶
-
Pulkovo_Gauss_9N
= 28469¶
-
Pulkovo_Gauss_zone_10
= 28410¶
-
Pulkovo_Gauss_zone_11
= 28411¶
-
Pulkovo_Gauss_zone_12
= 28412¶
-
Pulkovo_Gauss_zone_13
= 28413¶
-
Pulkovo_Gauss_zone_14
= 28414¶
-
Pulkovo_Gauss_zone_15
= 28415¶
-
Pulkovo_Gauss_zone_16
= 28416¶
-
Pulkovo_Gauss_zone_17
= 28417¶
-
Pulkovo_Gauss_zone_18
= 28418¶
-
Pulkovo_Gauss_zone_19
= 28419¶
-
Pulkovo_Gauss_zone_20
= 28420¶
-
Pulkovo_Gauss_zone_21
= 28421¶
-
Pulkovo_Gauss_zone_22
= 28422¶
-
Pulkovo_Gauss_zone_23
= 28423¶
-
Pulkovo_Gauss_zone_24
= 28424¶
-
Pulkovo_Gauss_zone_25
= 28425¶
-
Pulkovo_Gauss_zone_26
= 28426¶
-
Pulkovo_Gauss_zone_27
= 28427¶
-
Pulkovo_Gauss_zone_28
= 28428¶
-
Pulkovo_Gauss_zone_29
= 28429¶
-
Pulkovo_Gauss_zone_30
= 28430¶
-
Pulkovo_Gauss_zone_31
= 28431¶
-
Pulkovo_Gauss_zone_32
= 28432¶
-
Pulkovo_Gauss_zone_4
= 28404¶
-
Pulkovo_Gauss_zone_5
= 28405¶
-
Pulkovo_Gauss_zone_6
= 28406¶
-
Pulkovo_Gauss_zone_7
= 28407¶
-
Pulkovo_Gauss_zone_8
= 28408¶
-
Pulkovo_Gauss_zone_9
= 28409¶
-
Qatar_National_Grid
= 28600¶
-
RD_Netherlands_New
= 28992¶
-
RD_Netherlands_Old
= 28991¶
-
RT90_2_5_gon_W
= 2400¶
-
SAD69_UTM_zone_17S
= 29177¶
-
SAD69_UTM_zone_18N
= 29118¶
-
SAD69_UTM_zone_18S
= 29178¶
-
SAD69_UTM_zone_19N
= 29119¶
-
SAD69_UTM_zone_19S
= 29179¶
-
SAD69_UTM_zone_20N
= 29120¶
-
SAD69_UTM_zone_20S
= 29180¶
-
SAD69_UTM_zone_21N
= 29121¶
-
SAD69_UTM_zone_21S
= 29181¶
-
SAD69_UTM_zone_22N
= 29122¶
-
SAD69_UTM_zone_22S
= 29182¶
-
SAD69_UTM_zone_23S
= 29183¶
-
SAD69_UTM_zone_24S
= 29184¶
-
SAD69_UTM_zone_25S
= 29185¶
-
Sapper_Hill_UTM_20S
= 29220¶
-
Sapper_Hill_UTM_21S
= 29221¶
-
Schwarzeck_UTM_33S
= 29333¶
-
Sudan_UTM_zone_35N
= 29635¶
-
Sudan_UTM_zone_36N
= 29636¶
-
TC_1948_UTM_zone_39N
= 30339¶
-
TC_1948_UTM_zone_40N
= 30340¶
-
TM65_Irish_Nat_Grid
= 29900¶
-
Tananarive_Laborde
= 29700¶
-
Tananarive_UTM_38S
= 29738¶
-
Tananarive_UTM_39S
= 29739¶
-
Timbalai_1948_Borneo
= 29800¶
-
Timbalai_1948_UTM_49N
= 29849¶
-
Timbalai_1948_UTM_50N
= 29850¶
-
Trinidad_1903_Trinidad
= 30200¶
-
Undefined
= 0¶
-
User_Defined
= 32767¶
-
Voirol_N_Algerie_ancien
= 30491¶
-
Voirol_S_Algerie_ancien
= 30492¶
-
Voirol_Unifie_N_Algerie
= 30591¶
-
Voirol_Unifie_S_Algerie
= 30592¶
-
WGS72BE_UTM_zone_10N
= 32410¶
-
WGS72BE_UTM_zone_10S
= 32510¶
-
WGS72BE_UTM_zone_11N
= 32411¶
-
WGS72BE_UTM_zone_11S
= 32511¶
-
WGS72BE_UTM_zone_12N
= 32412¶
-
WGS72BE_UTM_zone_12S
= 32512¶
-
WGS72BE_UTM_zone_13N
= 32413¶
-
WGS72BE_UTM_zone_13S
= 32513¶
-
WGS72BE_UTM_zone_14N
= 32414¶
-
WGS72BE_UTM_zone_14S
= 32514¶
-
WGS72BE_UTM_zone_15N
= 32415¶
-
WGS72BE_UTM_zone_15S
= 32515¶
-
WGS72BE_UTM_zone_16N
= 32416¶
-
WGS72BE_UTM_zone_16S
= 32516¶
-
WGS72BE_UTM_zone_17N
= 32417¶
-
WGS72BE_UTM_zone_17S
= 32517¶
-
WGS72BE_UTM_zone_18N
= 32418¶
-
WGS72BE_UTM_zone_18S
= 32518¶
-
WGS72BE_UTM_zone_19N
= 32419¶
-
WGS72BE_UTM_zone_19S
= 32519¶
-
WGS72BE_UTM_zone_1N
= 32401¶
-
WGS72BE_UTM_zone_1S
= 32501¶
-
WGS72BE_UTM_zone_20N
= 32420¶
-
WGS72BE_UTM_zone_20S
= 32520¶
-
WGS72BE_UTM_zone_21N
= 32421¶
-
WGS72BE_UTM_zone_21S
= 32521¶
-
WGS72BE_UTM_zone_22N
= 32422¶
-
WGS72BE_UTM_zone_22S
= 32522¶
-
WGS72BE_UTM_zone_23N
= 32423¶
-
WGS72BE_UTM_zone_23S
= 32523¶
-
WGS72BE_UTM_zone_24N
= 32424¶
-
WGS72BE_UTM_zone_24S
= 32524¶
-
WGS72BE_UTM_zone_25N
= 32425¶
-
WGS72BE_UTM_zone_25S
= 32525¶
-
WGS72BE_UTM_zone_26N
= 32426¶
-
WGS72BE_UTM_zone_26S
= 32526¶
-
WGS72BE_UTM_zone_27N
= 32427¶
-
WGS72BE_UTM_zone_27S
= 32527¶
-
WGS72BE_UTM_zone_28N
= 32428¶
-
WGS72BE_UTM_zone_28S
= 32528¶
-
WGS72BE_UTM_zone_29N
= 32429¶
-
WGS72BE_UTM_zone_29S
= 32529¶
-
WGS72BE_UTM_zone_2N
= 32402¶
-
WGS72BE_UTM_zone_2S
= 32502¶
-
WGS72BE_UTM_zone_30N
= 32430¶
-
WGS72BE_UTM_zone_30S
= 32530¶
-
WGS72BE_UTM_zone_31N
= 32431¶
-
WGS72BE_UTM_zone_31S
= 32531¶
-
WGS72BE_UTM_zone_32N
= 32432¶
-
WGS72BE_UTM_zone_32S
= 32532¶
-
WGS72BE_UTM_zone_33N
= 32433¶
-
WGS72BE_UTM_zone_33S
= 32533¶
-
WGS72BE_UTM_zone_34N
= 32434¶
-
WGS72BE_UTM_zone_34S
= 32534¶
-
WGS72BE_UTM_zone_35N
= 32435¶
-
WGS72BE_UTM_zone_35S
= 32535¶
-
WGS72BE_UTM_zone_36N
= 32436¶
-
WGS72BE_UTM_zone_36S
= 32536¶
-
WGS72BE_UTM_zone_37N
= 32437¶
-
WGS72BE_UTM_zone_37S
= 32537¶
-
WGS72BE_UTM_zone_38N
= 32438¶
-
WGS72BE_UTM_zone_38S
= 32538¶
-
WGS72BE_UTM_zone_39N
= 32439¶
-
WGS72BE_UTM_zone_39S
= 32539¶
-
WGS72BE_UTM_zone_3N
= 32403¶
-
WGS72BE_UTM_zone_3S
= 32503¶
-
WGS72BE_UTM_zone_40N
= 32440¶
-
WGS72BE_UTM_zone_40S
= 32540¶
-
WGS72BE_UTM_zone_41N
= 32441¶
-
WGS72BE_UTM_zone_41S
= 32541¶
-
WGS72BE_UTM_zone_42N
= 32442¶
-
WGS72BE_UTM_zone_42S
= 32542¶
-
WGS72BE_UTM_zone_43N
= 32443¶
-
WGS72BE_UTM_zone_43S
= 32543¶
-
WGS72BE_UTM_zone_44N
= 32444¶
-
WGS72BE_UTM_zone_44S
= 32544¶
-
WGS72BE_UTM_zone_45N
= 32445¶
-
WGS72BE_UTM_zone_45S
= 32545¶
-
WGS72BE_UTM_zone_46N
= 32446¶
-
WGS72BE_UTM_zone_46S
= 32546¶
-
WGS72BE_UTM_zone_47N
= 32447¶
-
WGS72BE_UTM_zone_47S
= 32547¶
-
WGS72BE_UTM_zone_48N
= 32448¶
-
WGS72BE_UTM_zone_48S
= 32548¶
-
WGS72BE_UTM_zone_49N
= 32449¶
-
WGS72BE_UTM_zone_49S
= 32549¶
-
WGS72BE_UTM_zone_4N
= 32404¶
-
WGS72BE_UTM_zone_4S
= 32504¶
-
WGS72BE_UTM_zone_50N
= 32450¶
-
WGS72BE_UTM_zone_50S
= 32550¶
-
WGS72BE_UTM_zone_51N
= 32451¶
-
WGS72BE_UTM_zone_51S
= 32551¶
-
WGS72BE_UTM_zone_52N
= 32452¶
-
WGS72BE_UTM_zone_52S
= 32552¶
-
WGS72BE_UTM_zone_53N
= 32453¶
-
WGS72BE_UTM_zone_53S
= 32553¶
-
WGS72BE_UTM_zone_54N
= 32454¶
-
WGS72BE_UTM_zone_54S
= 32554¶
-
WGS72BE_UTM_zone_55N
= 32455¶
-
WGS72BE_UTM_zone_55S
= 32555¶
-
WGS72BE_UTM_zone_56N
= 32456¶
-
WGS72BE_UTM_zone_56S
= 32556¶
-
WGS72BE_UTM_zone_57N
= 32457¶
-
WGS72BE_UTM_zone_57S
= 32557¶
-
WGS72BE_UTM_zone_58N
= 32458¶
-
WGS72BE_UTM_zone_58S
= 32558¶
-
WGS72BE_UTM_zone_59N
= 32459¶
-
WGS72BE_UTM_zone_59S
= 32559¶
-
WGS72BE_UTM_zone_5N
= 32405¶
-
WGS72BE_UTM_zone_5S
= 32505¶
-
WGS72BE_UTM_zone_60N
= 32460¶
-
WGS72BE_UTM_zone_60S
= 32560¶
-
WGS72BE_UTM_zone_6N
= 32406¶
-
WGS72BE_UTM_zone_6S
= 32506¶
-
WGS72BE_UTM_zone_7N
= 32407¶
-
WGS72BE_UTM_zone_7S
= 32507¶
-
WGS72BE_UTM_zone_8N
= 32408¶
-
WGS72BE_UTM_zone_8S
= 32508¶
-
WGS72BE_UTM_zone_9N
= 32409¶
-
WGS72BE_UTM_zone_9S
= 32509¶
-
WGS72_UTM_zone_10N
= 32210¶
-
WGS72_UTM_zone_10S
= 32310¶
-
WGS72_UTM_zone_11N
= 32211¶
-
WGS72_UTM_zone_11S
= 32311¶
-
WGS72_UTM_zone_12N
= 32212¶
-
WGS72_UTM_zone_12S
= 32312¶
-
WGS72_UTM_zone_13N
= 32213¶
-
WGS72_UTM_zone_13S
= 32313¶
-
WGS72_UTM_zone_14N
= 32214¶
-
WGS72_UTM_zone_14S
= 32314¶
-
WGS72_UTM_zone_15N
= 32215¶
-
WGS72_UTM_zone_15S
= 32315¶
-
WGS72_UTM_zone_16N
= 32216¶
-
WGS72_UTM_zone_16S
= 32316¶
-
WGS72_UTM_zone_17N
= 32217¶
-
WGS72_UTM_zone_17S
= 32317¶
-
WGS72_UTM_zone_18N
= 32218¶
-
WGS72_UTM_zone_18S
= 32318¶
-
WGS72_UTM_zone_19N
= 32219¶
-
WGS72_UTM_zone_19S
= 32319¶
-
WGS72_UTM_zone_1N
= 32201¶
-
WGS72_UTM_zone_1S
= 32301¶
-
WGS72_UTM_zone_20N
= 32220¶
-
WGS72_UTM_zone_20S
= 32320¶
-
WGS72_UTM_zone_21N
= 32221¶
-
WGS72_UTM_zone_21S
= 32321¶
-
WGS72_UTM_zone_22N
= 32222¶
-
WGS72_UTM_zone_22S
= 32322¶
-
WGS72_UTM_zone_23N
= 32223¶
-
WGS72_UTM_zone_23S
= 32323¶
-
WGS72_UTM_zone_24N
= 32224¶
-
WGS72_UTM_zone_24S
= 32324¶
-
WGS72_UTM_zone_25N
= 32225¶
-
WGS72_UTM_zone_25S
= 32325¶
-
WGS72_UTM_zone_26N
= 32226¶
-
WGS72_UTM_zone_26S
= 32326¶
-
WGS72_UTM_zone_27N
= 32227¶
-
WGS72_UTM_zone_27S
= 32327¶
-
WGS72_UTM_zone_28N
= 32228¶
-
WGS72_UTM_zone_28S
= 32328¶
-
WGS72_UTM_zone_29N
= 32229¶
-
WGS72_UTM_zone_29S
= 32329¶
-
WGS72_UTM_zone_2N
= 32202¶
-
WGS72_UTM_zone_2S
= 32302¶
-
WGS72_UTM_zone_30N
= 32230¶
-
WGS72_UTM_zone_30S
= 32330¶
-
WGS72_UTM_zone_31N
= 32231¶
-
WGS72_UTM_zone_31S
= 32331¶
-
WGS72_UTM_zone_32N
= 32232¶
-
WGS72_UTM_zone_32S
= 32332¶
-
WGS72_UTM_zone_33N
= 32233¶
-
WGS72_UTM_zone_33S
= 32333¶
-
WGS72_UTM_zone_34N
= 32234¶
-
WGS72_UTM_zone_34S
= 32334¶
-
WGS72_UTM_zone_35N
= 32235¶
-
WGS72_UTM_zone_35S
= 32335¶
-
WGS72_UTM_zone_36N
= 32236¶
-
WGS72_UTM_zone_36S
= 32336¶
-
WGS72_UTM_zone_37N
= 32237¶
-
WGS72_UTM_zone_37S
= 32337¶
-
WGS72_UTM_zone_38N
= 32238¶
-
WGS72_UTM_zone_38S
= 32338¶
-
WGS72_UTM_zone_39N
= 32239¶
-
WGS72_UTM_zone_39S
= 32339¶
-
WGS72_UTM_zone_3N
= 32203¶
-
WGS72_UTM_zone_3S
= 32303¶
-
WGS72_UTM_zone_40N
= 32240¶
-
WGS72_UTM_zone_40S
= 32340¶
-
WGS72_UTM_zone_41N
= 32241¶
-
WGS72_UTM_zone_41S
= 32341¶
-
WGS72_UTM_zone_42N
= 32242¶
-
WGS72_UTM_zone_42S
= 32342¶
-
WGS72_UTM_zone_43N
= 32243¶
-
WGS72_UTM_zone_43S
= 32343¶
-
WGS72_UTM_zone_44N
= 32244¶
-
WGS72_UTM_zone_44S
= 32344¶
-
WGS72_UTM_zone_45N
= 32245¶
-
WGS72_UTM_zone_45S
= 32345¶
-
WGS72_UTM_zone_46N
= 32246¶
-
WGS72_UTM_zone_46S
= 32346¶
-
WGS72_UTM_zone_47N
= 32247¶
-
WGS72_UTM_zone_47S
= 32347¶
-
WGS72_UTM_zone_48N
= 32248¶
-
WGS72_UTM_zone_48S
= 32348¶
-
WGS72_UTM_zone_49N
= 32249¶
-
WGS72_UTM_zone_49S
= 32349¶
-
WGS72_UTM_zone_4N
= 32204¶
-
WGS72_UTM_zone_4S
= 32304¶
-
WGS72_UTM_zone_50N
= 32250¶
-
WGS72_UTM_zone_50S
= 32350¶
-
WGS72_UTM_zone_51N
= 32251¶
-
WGS72_UTM_zone_51S
= 32351¶
-
WGS72_UTM_zone_52N
= 32252¶
-
WGS72_UTM_zone_52S
= 32352¶
-
WGS72_UTM_zone_53N
= 32253¶
-
WGS72_UTM_zone_53S
= 32353¶
-
WGS72_UTM_zone_54N
= 32254¶
-
WGS72_UTM_zone_54S
= 32354¶
-
WGS72_UTM_zone_55N
= 32255¶
-
WGS72_UTM_zone_55S
= 32355¶
-
WGS72_UTM_zone_56N
= 32256¶
-
WGS72_UTM_zone_56S
= 32356¶
-
WGS72_UTM_zone_57N
= 32257¶
-
WGS72_UTM_zone_57S
= 32357¶
-
WGS72_UTM_zone_58N
= 32258¶
-
WGS72_UTM_zone_58S
= 32358¶
-
WGS72_UTM_zone_59N
= 32259¶
-
WGS72_UTM_zone_59S
= 32359¶
-
WGS72_UTM_zone_5N
= 32205¶
-
WGS72_UTM_zone_5S
= 32305¶
-
WGS72_UTM_zone_60N
= 32260¶
-
WGS72_UTM_zone_60S
= 32360¶
-
WGS72_UTM_zone_6N
= 32206¶
-
WGS72_UTM_zone_6S
= 32306¶
-
WGS72_UTM_zone_7N
= 32207¶
-
WGS72_UTM_zone_7S
= 32307¶
-
WGS72_UTM_zone_8N
= 32208¶
-
WGS72_UTM_zone_8S
= 32308¶
-
WGS72_UTM_zone_9N
= 32209¶
-
WGS72_UTM_zone_9S
= 32309¶
-
WGS84_UTM_zone_10N
= 32610¶
-
WGS84_UTM_zone_10S
= 32710¶
-
WGS84_UTM_zone_11N
= 32611¶
-
WGS84_UTM_zone_11S
= 32711¶
-
WGS84_UTM_zone_12N
= 32612¶
-
WGS84_UTM_zone_12S
= 32712¶
-
WGS84_UTM_zone_13N
= 32613¶
-
WGS84_UTM_zone_13S
= 32713¶
-
WGS84_UTM_zone_14N
= 32614¶
-
WGS84_UTM_zone_14S
= 32714¶
-
WGS84_UTM_zone_15N
= 32615¶
-
WGS84_UTM_zone_15S
= 32715¶
-
WGS84_UTM_zone_16N
= 32616¶
-
WGS84_UTM_zone_16S
= 32716¶
-
WGS84_UTM_zone_17N
= 32617¶
-
WGS84_UTM_zone_17S
= 32717¶
-
WGS84_UTM_zone_18N
= 32618¶
-
WGS84_UTM_zone_18S
= 32718¶
-
WGS84_UTM_zone_19N
= 32619¶
-
WGS84_UTM_zone_19S
= 32719¶
-
WGS84_UTM_zone_1N
= 32601¶
-
WGS84_UTM_zone_1S
= 32701¶
-
WGS84_UTM_zone_20N
= 32620¶
-
WGS84_UTM_zone_20S
= 32720¶
-
WGS84_UTM_zone_21N
= 32621¶
-
WGS84_UTM_zone_21S
= 32721¶
-
WGS84_UTM_zone_22N
= 32622¶
-
WGS84_UTM_zone_22S
= 32722¶
-
WGS84_UTM_zone_23N
= 32623¶
-
WGS84_UTM_zone_23S
= 32723¶
-
WGS84_UTM_zone_24N
= 32624¶
-
WGS84_UTM_zone_24S
= 32724¶
-
WGS84_UTM_zone_25N
= 32625¶
-
WGS84_UTM_zone_25S
= 32725¶
-
WGS84_UTM_zone_26N
= 32626¶
-
WGS84_UTM_zone_26S
= 32726¶
-
WGS84_UTM_zone_27N
= 32627¶
-
WGS84_UTM_zone_27S
= 32727¶
-
WGS84_UTM_zone_28N
= 32628¶
-
WGS84_UTM_zone_28S
= 32728¶
-
WGS84_UTM_zone_29N
= 32629¶
-
WGS84_UTM_zone_29S
= 32729¶
-
WGS84_UTM_zone_2N
= 32602¶
-
WGS84_UTM_zone_2S
= 32702¶
-
WGS84_UTM_zone_30N
= 32630¶
-
WGS84_UTM_zone_30S
= 32730¶
-
WGS84_UTM_zone_31N
= 32631¶
-
WGS84_UTM_zone_31S
= 32731¶
-
WGS84_UTM_zone_32N
= 32632¶
-
WGS84_UTM_zone_32S
= 32732¶
-
WGS84_UTM_zone_33N
= 32633¶
-
WGS84_UTM_zone_33S
= 32733¶
-
WGS84_UTM_zone_34N
= 32634¶
-
WGS84_UTM_zone_34S
= 32734¶
-
WGS84_UTM_zone_35N
= 32635¶
-
WGS84_UTM_zone_35S
= 32735¶
-
WGS84_UTM_zone_36N
= 32636¶
-
WGS84_UTM_zone_36S
= 32736¶
-
WGS84_UTM_zone_37N
= 32637¶
-
WGS84_UTM_zone_37S
= 32737¶
-
WGS84_UTM_zone_38N
= 32638¶
-
WGS84_UTM_zone_38S
= 32738¶
-
WGS84_UTM_zone_39N
= 32639¶
-
WGS84_UTM_zone_39S
= 32739¶
-
WGS84_UTM_zone_3N
= 32603¶
-
WGS84_UTM_zone_3S
= 32703¶
-
WGS84_UTM_zone_40N
= 32640¶
-
WGS84_UTM_zone_40S
= 32740¶
-
WGS84_UTM_zone_41N
= 32641¶
-
WGS84_UTM_zone_41S
= 32741¶
-
WGS84_UTM_zone_42N
= 32642¶
-
WGS84_UTM_zone_42S
= 32742¶
-
WGS84_UTM_zone_43N
= 32643¶
-
WGS84_UTM_zone_43S
= 32743¶
-
WGS84_UTM_zone_44N
= 32644¶
-
WGS84_UTM_zone_44S
= 32744¶
-
WGS84_UTM_zone_45N
= 32645¶
-
WGS84_UTM_zone_45S
= 32745¶
-
WGS84_UTM_zone_46N
= 32646¶
-
WGS84_UTM_zone_46S
= 32746¶
-
WGS84_UTM_zone_47N
= 32647¶
-
WGS84_UTM_zone_47S
= 32747¶
-
WGS84_UTM_zone_48N
= 32648¶
-
WGS84_UTM_zone_48S
= 32748¶
-
WGS84_UTM_zone_49N
= 32649¶
-
WGS84_UTM_zone_49S
= 32749¶
-
WGS84_UTM_zone_4N
= 32604¶
-
WGS84_UTM_zone_4S
= 32704¶
-
WGS84_UTM_zone_50N
= 32650¶
-
WGS84_UTM_zone_50S
= 32750¶
-
WGS84_UTM_zone_51N
= 32651¶
-
WGS84_UTM_zone_51S
= 32751¶
-
WGS84_UTM_zone_52N
= 32652¶
-
WGS84_UTM_zone_52S
= 32752¶
-
WGS84_UTM_zone_53N
= 32653¶
-
WGS84_UTM_zone_53S
= 32753¶
-
WGS84_UTM_zone_54N
= 32654¶
-
WGS84_UTM_zone_54S
= 32754¶
-
WGS84_UTM_zone_55N
= 32655¶
-
WGS84_UTM_zone_55S
= 32755¶
-
WGS84_UTM_zone_56N
= 32656¶
-
WGS84_UTM_zone_56S
= 32756¶
-
WGS84_UTM_zone_57N
= 32657¶
-
WGS84_UTM_zone_57S
= 32757¶
-
WGS84_UTM_zone_58N
= 32658¶
-
WGS84_UTM_zone_58S
= 32758¶
-
WGS84_UTM_zone_59N
= 32659¶
-
WGS84_UTM_zone_59S
= 32759¶
-
WGS84_UTM_zone_5N
= 32605¶
-
WGS84_UTM_zone_5S
= 32705¶
-
WGS84_UTM_zone_60N
= 32660¶
-
WGS84_UTM_zone_60S
= 32760¶
-
WGS84_UTM_zone_6N
= 32606¶
-
WGS84_UTM_zone_6S
= 32706¶
-
WGS84_UTM_zone_7N
= 32607¶
-
WGS84_UTM_zone_7S
= 32707¶
-
WGS84_UTM_zone_8N
= 32608¶
-
WGS84_UTM_zone_8S
= 32708¶
-
WGS84_UTM_zone_9N
= 32609¶
-
WGS84_UTM_zone_9S
= 32709¶
-
Yoff_UTM_zone_28N
= 31028¶
-
Zanderij_UTM_zone_21N
= 31121¶
-
-
class
tifffile.tifffile_geodb.
PM
¶ Bases:
enum.IntEnum
Prime Meridian Codes.
-
Bern
= 8907¶
-
Bogota
= 8904¶
-
Brussels
= 8910¶
-
Ferro
= 8909¶
-
Greenwich
= 8901¶
-
Jakarta
= 8908¶
-
Lisbon
= 8902¶
-
Madrid
= 8905¶
-
Paris
= 8903¶
-
Rome
= 8906¶
-
Stockholm
= 8911¶
-
Undefined
= 0¶
-
User_Defined
= 32767¶
-
-
class
tifffile.tifffile_geodb.
Proj
¶ Bases:
enum.IntEnum
Projection Codes.
-
Alabama_CS27_East
= 10101¶
-
Alabama_CS27_West
= 10102¶
-
Alabama_CS83_East
= 10131¶
-
Alabama_CS83_West
= 10132¶
-
Alaska_CS27_1
= 15001¶
-
Alaska_CS27_10
= 15010¶
-
Alaska_CS27_2
= 15002¶
-
Alaska_CS27_3
= 15003¶
-
Alaska_CS27_4
= 15004¶
-
Alaska_CS27_5
= 15005¶
-
Alaska_CS27_6
= 15006¶
-
Alaska_CS27_7
= 15007¶
-
Alaska_CS27_8
= 15008¶
-
Alaska_CS27_9
= 15009¶
-
Alaska_CS83_1
= 15031¶
-
Alaska_CS83_10
= 15040¶
-
Alaska_CS83_2
= 15032¶
-
Alaska_CS83_3
= 15033¶
-
Alaska_CS83_4
= 15034¶
-
Alaska_CS83_5
= 15035¶
-
Alaska_CS83_6
= 15036¶
-
Alaska_CS83_7
= 15037¶
-
Alaska_CS83_8
= 15038¶
-
Alaska_CS83_9
= 15039¶
-
Argentina_1
= 18031¶
-
Argentina_2
= 18032¶
-
Argentina_3
= 18033¶
-
Argentina_4
= 18034¶
-
Argentina_5
= 18035¶
-
Argentina_6
= 18036¶
-
Argentina_7
= 18037¶
-
Arizona_CS83_Central
= 10232¶
-
Arizona_CS83_east
= 10231¶
-
Arizona_CS83_west
= 10233¶
-
Arizona_Coordinate_System_Central
= 10202¶
-
Arizona_Coordinate_System_east
= 10201¶
-
Arizona_Coordinate_System_west
= 10203¶
-
Arkansas_CS27_North
= 10301¶
-
Arkansas_CS27_South
= 10302¶
-
Arkansas_CS83_North
= 10331¶
-
Arkansas_CS83_South
= 10332¶
-
Australian_Map_Grid_48
= 17448¶
-
Australian_Map_Grid_49
= 17449¶
-
Australian_Map_Grid_50
= 17450¶
-
Australian_Map_Grid_51
= 17451¶
-
Australian_Map_Grid_52
= 17452¶
-
Australian_Map_Grid_53
= 17453¶
-
Australian_Map_Grid_54
= 17454¶
-
Australian_Map_Grid_55
= 17455¶
-
Australian_Map_Grid_56
= 17456¶
-
Australian_Map_Grid_57
= 17457¶
-
Australian_Map_Grid_58
= 17458¶
-
BLM_14N_feet
= 15914¶
-
BLM_15N_feet
= 15915¶
-
BLM_16N_feet
= 15916¶
-
BLM_17N_feet
= 15917¶
-
Bahrain_Grid
= 19900¶
-
California_CS27_I
= 10401¶
-
California_CS27_II
= 10402¶
-
California_CS27_III
= 10403¶
-
California_CS27_IV
= 10404¶
-
California_CS27_V
= 10405¶
-
California_CS27_VI
= 10406¶
-
California_CS27_VII
= 10407¶
-
California_CS83_1
= 10431¶
-
California_CS83_2
= 10432¶
-
California_CS83_3
= 10433¶
-
California_CS83_4
= 10434¶
-
California_CS83_5
= 10435¶
-
California_CS83_6
= 10436¶
-
Colombia_3E
= 18053¶
-
Colombia_3W
= 18051¶
-
Colombia_6E
= 18054¶
-
Colombia_Bogota
= 18052¶
-
Colorado_CS27_Central
= 10502¶
-
Colorado_CS27_North
= 10501¶
-
Colorado_CS27_South
= 10503¶
-
Colorado_CS83_Central
= 10532¶
-
Colorado_CS83_North
= 10531¶
-
Colorado_CS83_South
= 10533¶
-
Connecticut_CS27
= 10600¶
-
Connecticut_CS83
= 10630¶
-
Delaware_CS27
= 10700¶
-
Delaware_CS83
= 10730¶
-
Egypt_Purple_Belt
= 18073¶
-
Egypt_Red_Belt
= 18072¶
-
Extended_Purple_Belt
= 18074¶
-
Florida_CS27_East
= 10901¶
-
Florida_CS27_North
= 10903¶
-
Florida_CS27_West
= 10902¶
-
Florida_CS83_East
= 10931¶
-
Florida_CS83_North
= 10933¶
-
Florida_CS83_West
= 10932¶
-
Gauss_Kruger_zone_0
= 16200¶
-
Gauss_Kruger_zone_1
= 16201¶
-
Gauss_Kruger_zone_2
= 16202¶
-
Gauss_Kruger_zone_3
= 16203¶
-
Gauss_Kruger_zone_4
= 16204¶
-
Gauss_Kruger_zone_5
= 16205¶
-
Georgia_CS27_East
= 11001¶
-
Georgia_CS27_West
= 11002¶
-
Georgia_CS83_East
= 11031¶
-
Georgia_CS83_West
= 11032¶
-
Hawaii_CS27_1
= 15101¶
-
Hawaii_CS27_2
= 15102¶
-
Hawaii_CS27_3
= 15103¶
-
Hawaii_CS27_4
= 15104¶
-
Hawaii_CS27_5
= 15105¶
-
Hawaii_CS83_1
= 15131¶
-
Hawaii_CS83_2
= 15132¶
-
Hawaii_CS83_3
= 15133¶
-
Hawaii_CS83_4
= 15134¶
-
Hawaii_CS83_5
= 15135¶
-
Idaho_CS27_Central
= 11102¶
-
Idaho_CS27_East
= 11101¶
-
Idaho_CS27_West
= 11103¶
-
Idaho_CS83_Central
= 11132¶
-
Idaho_CS83_East
= 11131¶
-
Idaho_CS83_West
= 11133¶
-
Illinois_CS27_East
= 11201¶
-
Illinois_CS27_West
= 11202¶
-
Illinois_CS83_East
= 11231¶
-
Illinois_CS83_West
= 11232¶
-
Indiana_CS27_East
= 11301¶
-
Indiana_CS27_West
= 11302¶
-
Indiana_CS83_East
= 11331¶
-
Indiana_CS83_West
= 11332¶
-
Iowa_CS27_North
= 11401¶
-
Iowa_CS27_South
= 11402¶
-
Iowa_CS83_North
= 11431¶
-
Iowa_CS83_South
= 11432¶
-
Kansas_CS27_North
= 11501¶
-
Kansas_CS27_South
= 11502¶
-
Kansas_CS83_North
= 11531¶
-
Kansas_CS83_South
= 11532¶
-
Kentucky_CS27_North
= 11601¶
-
Kentucky_CS27_South
= 11602¶
-
Kentucky_CS83_North
= 15303¶
-
Kentucky_CS83_South
= 11632¶
-
Louisiana_CS27_North
= 11701¶
-
Louisiana_CS27_South
= 11702¶
-
Louisiana_CS83_North
= 11731¶
-
Louisiana_CS83_South
= 11732¶
-
Maine_CS27_East
= 11801¶
-
Maine_CS27_West
= 11802¶
-
Maine_CS83_East
= 11831¶
-
Maine_CS83_West
= 11832¶
-
Map_Grid_of_Australia_48
= 17348¶
-
Map_Grid_of_Australia_49
= 17349¶
-
Map_Grid_of_Australia_50
= 17350¶
-
Map_Grid_of_Australia_51
= 17351¶
-
Map_Grid_of_Australia_52
= 17352¶
-
Map_Grid_of_Australia_53
= 17353¶
-
Map_Grid_of_Australia_54
= 17354¶
-
Map_Grid_of_Australia_55
= 17355¶
-
Map_Grid_of_Australia_56
= 17356¶
-
Map_Grid_of_Australia_57
= 17357¶
-
Map_Grid_of_Australia_58
= 17358¶
-
Maryland_CS27
= 11900¶
-
Maryland_CS83
= 11930¶
-
Massachusetts_CS27_Island
= 12002¶
-
Massachusetts_CS27_Mainland
= 12001¶
-
Massachusetts_CS83_Island
= 12032¶
-
Massachusetts_CS83_Mainland
= 12031¶
-
Michigan_CS27_Central
= 12112¶
-
Michigan_CS27_North
= 12111¶
-
Michigan_CS27_South
= 12113¶
-
Michigan_CS83_Central
= 12142¶
-
Michigan_CS83_North
= 12141¶
-
Michigan_CS83_South
= 12143¶
-
Michigan_State_Plane_East
= 12101¶
-
Michigan_State_Plane_Old_Central
= 12102¶
-
Michigan_State_Plane_West
= 12103¶
-
Minnesota_CS27_Central
= 12202¶
-
Minnesota_CS27_North
= 12201¶
-
Minnesota_CS27_South
= 12203¶
-
Minnesota_CS83_Central
= 12232¶
-
Minnesota_CS83_North
= 12231¶
-
Minnesota_CS83_South
= 12233¶
-
Mississippi_CS27_East
= 12301¶
-
Mississippi_CS27_West
= 12302¶
-
Mississippi_CS83_East
= 12331¶
-
Mississippi_CS83_West
= 12332¶
-
Missouri_CS27_Central
= 12402¶
-
Missouri_CS27_East
= 12401¶
-
Missouri_CS27_West
= 12403¶
-
Missouri_CS83_Central
= 12432¶
-
Missouri_CS83_East
= 12431¶
-
Missouri_CS83_West
= 12433¶
-
Montana_CS27_Central
= 12502¶
-
Montana_CS27_North
= 12501¶
-
Montana_CS27_South
= 12503¶
-
Montana_CS83
= 12530¶
-
Nebraska_CS27_North
= 12601¶
-
Nebraska_CS27_South
= 12602¶
-
Nebraska_CS83
= 12630¶
-
Netherlands_E_Indies_Equatorial
= 19905¶
-
Nevada_CS27_Central
= 12702¶
-
Nevada_CS27_East
= 12701¶
-
Nevada_CS27_West
= 12703¶
-
Nevada_CS83_Central
= 12732¶
-
Nevada_CS83_East
= 12731¶
-
Nevada_CS83_West
= 12733¶
-
New_Hampshire_CS27
= 12800¶
-
New_Hampshire_CS83
= 12830¶
-
New_Jersey_CS27
= 12900¶
-
New_Jersey_CS83
= 12930¶
-
New_Mexico_CS27_Central
= 13002¶
-
New_Mexico_CS27_East
= 13001¶
-
New_Mexico_CS27_West
= 13003¶
-
New_Mexico_CS83_Central
= 13032¶
-
New_Mexico_CS83_East
= 13031¶
-
New_Mexico_CS83_West
= 13033¶
-
New_York_CS27_Central
= 13102¶
-
New_York_CS27_East
= 13101¶
-
New_York_CS27_Long_Island
= 13104¶
-
New_York_CS27_West
= 13103¶
-
New_York_CS83_Central
= 13132¶
-
New_York_CS83_East
= 13131¶
-
New_York_CS83_Long_Island
= 13134¶
-
New_York_CS83_West
= 13133¶
-
New_Zealand_North_Island_Nat_Grid
= 18141¶
-
New_Zealand_South_Island_Nat_Grid
= 18142¶
-
North_Carolina_CS27
= 13200¶
-
North_Carolina_CS83
= 13230¶
-
North_Dakota_CS27_North
= 13301¶
-
North_Dakota_CS27_South
= 13302¶
-
North_Dakota_CS83_North
= 13331¶
-
North_Dakota_CS83_South
= 13332¶
-
Ohio_CS27_North
= 13401¶
-
Ohio_CS27_South
= 13402¶
-
Ohio_CS83_North
= 13431¶
-
Ohio_CS83_South
= 13432¶
-
Oklahoma_CS27_North
= 13501¶
-
Oklahoma_CS27_South
= 13502¶
-
Oklahoma_CS83_North
= 13531¶
-
Oklahoma_CS83_South
= 13532¶
-
Oregon_CS27_North
= 13601¶
-
Oregon_CS27_South
= 13602¶
-
Oregon_CS83_North
= 13631¶
-
Oregon_CS83_South
= 13632¶
-
Pennsylvania_CS27_North
= 13701¶
-
Pennsylvania_CS27_South
= 13702¶
-
Pennsylvania_CS83_North
= 13731¶
-
Pennsylvania_CS83_South
= 13732¶
-
Puerto_Rico_CS27
= 15201¶
-
Puerto_Rico_Virgin_Is
= 15230¶
-
RSO_Borneo
= 19912¶
-
Rhode_Island_CS27
= 13800¶
-
Rhode_Island_CS83
= 13830¶
-
South_Carolina_CS27_North
= 13901¶
-
South_Carolina_CS27_South
= 13902¶
-
South_Carolina_CS83
= 13930¶
-
South_Dakota_CS27_North
= 14001¶
-
South_Dakota_CS27_South
= 14002¶
-
South_Dakota_CS83_North
= 14031¶
-
South_Dakota_CS83_South
= 14032¶
-
St_Croix
= 15202¶
-
Stereo_70
= 19926¶
-
Tennessee_CS27
= 15302¶
-
Tennessee_CS83
= 14130¶
-
Texas_CS27_Central
= 14203¶
-
Texas_CS27_North
= 14201¶
-
Texas_CS27_North_Central
= 14202¶
-
Texas_CS27_South
= 14205¶
-
Texas_CS27_South_Central
= 14204¶
-
Texas_CS83_Central
= 14233¶
-
Texas_CS83_North
= 14231¶
-
Texas_CS83_North_Central
= 14232¶
-
Texas_CS83_South
= 14235¶
-
Texas_CS83_South_Central
= 14234¶
-
UTM_zone_10N
= 16010¶
-
UTM_zone_10S
= 16110¶
-
UTM_zone_11N
= 16011¶
-
UTM_zone_11S
= 16111¶
-
UTM_zone_12N
= 16012¶
-
UTM_zone_12S
= 16112¶
-
UTM_zone_13N
= 16013¶
-
UTM_zone_13S
= 16113¶
-
UTM_zone_14N
= 16014¶
-
UTM_zone_14S
= 16114¶
-
UTM_zone_15N
= 16015¶
-
UTM_zone_15S
= 16115¶
-
UTM_zone_16N
= 16016¶
-
UTM_zone_16S
= 16116¶
-
UTM_zone_17N
= 16017¶
-
UTM_zone_17S
= 16117¶
-
UTM_zone_18N
= 16018¶
-
UTM_zone_18S
= 16118¶
-
UTM_zone_19N
= 16019¶
-
UTM_zone_19S
= 16119¶
-
UTM_zone_1N
= 16001¶
-
UTM_zone_1S
= 16101¶
-
UTM_zone_20N
= 16020¶
-
UTM_zone_20S
= 16120¶
-
UTM_zone_21N
= 16021¶
-
UTM_zone_21S
= 16121¶
-
UTM_zone_22N
= 16022¶
-
UTM_zone_22S
= 16122¶
-
UTM_zone_23N
= 16023¶
-
UTM_zone_23S
= 16123¶
-
UTM_zone_24N
= 16024¶
-
UTM_zone_24S
= 16124¶
-
UTM_zone_25N
= 16025¶
-
UTM_zone_25S
= 16125¶
-
UTM_zone_26N
= 16026¶
-
UTM_zone_26S
= 16126¶
-
UTM_zone_27N
= 16027¶
-
UTM_zone_27S
= 16127¶
-
UTM_zone_28N
= 16028¶
-
UTM_zone_28S
= 16128¶
-
UTM_zone_29N
= 16029¶
-
UTM_zone_29S
= 16129¶
-
UTM_zone_2N
= 16002¶
-
UTM_zone_2S
= 16102¶
-
UTM_zone_30N
= 16030¶
-
UTM_zone_30S
= 16130¶
-
UTM_zone_31N
= 16031¶
-
UTM_zone_31S
= 16131¶
-
UTM_zone_32N
= 16032¶
-
UTM_zone_32S
= 16132¶
-
UTM_zone_33N
= 16033¶
-
UTM_zone_33S
= 16133¶
-
UTM_zone_34N
= 16034¶
-
UTM_zone_34S
= 16134¶
-
UTM_zone_35N
= 16035¶
-
UTM_zone_35S
= 16135¶
-
UTM_zone_36N
= 16036¶
-
UTM_zone_36S
= 16136¶
-
UTM_zone_37N
= 16037¶
-
UTM_zone_37S
= 16137¶
-
UTM_zone_38N
= 16038¶
-
UTM_zone_38S
= 16138¶
-
UTM_zone_39N
= 16039¶
-
UTM_zone_39S
= 16139¶
-
UTM_zone_3N
= 16003¶
-
UTM_zone_3S
= 16103¶
-
UTM_zone_40N
= 16040¶
-
UTM_zone_40S
= 16140¶
-
UTM_zone_41N
= 16041¶
-
UTM_zone_41S
= 16141¶
-
UTM_zone_42N
= 16042¶
-
UTM_zone_42S
= 16142¶
-
UTM_zone_43N
= 16043¶
-
UTM_zone_43S
= 16143¶
-
UTM_zone_44N
= 16044¶
-
UTM_zone_44S
= 16144¶
-
UTM_zone_45N
= 16045¶
-
UTM_zone_45S
= 16145¶
-
UTM_zone_46N
= 16046¶
-
UTM_zone_46S
= 16146¶
-
UTM_zone_47N
= 16047¶
-
UTM_zone_47S
= 16147¶
-
UTM_zone_48N
= 16048¶
-
UTM_zone_48S
= 16148¶
-
UTM_zone_49N
= 16049¶
-
UTM_zone_49S
= 16149¶
-
UTM_zone_4N
= 16004¶
-
UTM_zone_4S
= 16104¶
-
UTM_zone_50N
= 16050¶
-
UTM_zone_50S
= 16150¶
-
UTM_zone_51N
= 16051¶
-
UTM_zone_51S
= 16151¶
-
UTM_zone_52N
= 16052¶
-
UTM_zone_52S
= 16152¶
-
UTM_zone_53N
= 16053¶
-
UTM_zone_53S
= 16153¶
-
UTM_zone_54N
= 16054¶
-
UTM_zone_54S
= 16154¶
-
UTM_zone_55N
= 16055¶
-
UTM_zone_55S
= 16155¶
-
UTM_zone_56N
= 16056¶
-
UTM_zone_56S
= 16156¶
-
UTM_zone_57N
= 16057¶
-
UTM_zone_57S
= 16157¶
-
UTM_zone_58N
= 16058¶
-
UTM_zone_58S
= 16158¶
-
UTM_zone_59N
= 16059¶
-
UTM_zone_59S
= 16159¶
-
UTM_zone_5N
= 16005¶
-
UTM_zone_5S
= 16105¶
-
UTM_zone_60N
= 16060¶
-
UTM_zone_60S
= 16160¶
-
UTM_zone_6N
= 16006¶
-
UTM_zone_6S
= 16106¶
-
UTM_zone_7N
= 16007¶
-
UTM_zone_7S
= 16107¶
-
UTM_zone_8N
= 16008¶
-
UTM_zone_8S
= 16108¶
-
UTM_zone_9N
= 16009¶
-
UTM_zone_9S
= 16109¶
-
Undefined
= 0¶
-
User_Defined
= 32767¶
-
Utah_CS27_Central
= 14302¶
-
Utah_CS27_North
= 14301¶
-
Utah_CS27_South
= 14303¶
-
Utah_CS83_Central
= 14332¶
-
Utah_CS83_North
= 14331¶
-
Utah_CS83_South
= 14333¶
-
Vermont_CS27
= 14400¶
-
Vermont_CS83
= 14430¶
-
Virginia_CS27_North
= 14501¶
-
Virginia_CS27_South
= 14502¶
-
Virginia_CS83_North
= 14531¶
-
Virginia_CS83_South
= 14532¶
-
Washington_CS27_North
= 14601¶
-
Washington_CS27_South
= 14602¶
-
Washington_CS83_North
= 14631¶
-
Washington_CS83_South
= 14632¶
-
West_Virginia_CS27_North
= 14701¶
-
West_Virginia_CS27_South
= 14702¶
-
West_Virginia_CS83_North
= 14731¶
-
West_Virginia_CS83_South
= 14732¶
-
Wisconsin_CS27_Central
= 14802¶
-
Wisconsin_CS27_North
= 14801¶
-
Wisconsin_CS27_South
= 14803¶
-
Wisconsin_CS83_Central
= 14832¶
-
Wisconsin_CS83_North
= 14831¶
-
Wisconsin_CS83_South
= 14833¶
-
Wyoming_CS27_East
= 14901¶
-
Wyoming_CS27_East_Central
= 14902¶
-
Wyoming_CS27_West
= 14904¶
-
Wyoming_CS27_West_Central
= 14903¶
-
Wyoming_CS83_East
= 14931¶
-
Wyoming_CS83_East_Central
= 14932¶
-
Wyoming_CS83_West
= 14934¶
-
Wyoming_CS83_West_Central
= 14933¶
-
-
class
tifffile.tifffile_geodb.
RasterPixel
¶ Bases:
enum.IntEnum
Raster Type Codes.
-
IsArea
= 1¶
-
IsPoint
= 2¶
-
Undefined
= 0¶
-
User_Defined
= 32767¶
-
-
class
tifffile.tifffile_geodb.
VertCS
¶ Bases:
enum.IntEnum
Vertical CS Type Codes.
-
ANS_ellipsoid
= 5003¶
-
Airy_1830_ellipsoid
= 5001¶
-
Airy_Modified_1849_ellipsoid
= 5002¶
-
Baltic_Sea
= 5105¶
-
Bessel_1841_ellipsoid
= 5004¶
-
Bessel_Modified_ellipsoid
= 5005¶
-
Bessel_Namibia_ellipsoid
= 5006¶
-
Caspian_Sea
= 5106¶
-
Clarke_1858_ellipsoid
= 5007¶
-
Clarke_1866_ellipsoid
= 5008¶
-
Clarke_1880_Arc_ellipsoid
= 5013¶
-
Clarke_1880_Benoit_ellipsoid
= 5010¶
-
Clarke_1880_IGN_ellipsoid
= 5011¶
-
Clarke_1880_RGS_ellipsoid
= 5012¶
-
Clarke_1880_SGA_1922_ellipsoid
= 5014¶
-
Everest_1830_1937_Adjustment_ellipsoid
= 5015¶
-
Everest_1830_1967_Definition_ellipsoid
= 5016¶
-
Everest_1830_1975_Definition_ellipsoid
= 5017¶
-
Everest_1830_Modified_ellipsoid
= 5018¶
-
GEM_10C_ellipsoid
= 5031¶
-
GRS_1980_ellipsoid
= 5019¶
-
Helmert_1906_ellipsoid
= 5020¶
-
INS_ellipsoid
= 5021¶
-
International_1924_ellipsoid
= 5022¶
-
International_1967_ellipsoid
= 5023¶
-
Krassowsky_1940_ellipsoid
= 5024¶
-
NWL_10D_ellipsoid
= 5026¶
-
NWL_9D_ellipsoid
= 5025¶
-
Newlyn
= 5101¶
-
North_American_Vertical_Datum_1929
= 5102¶
-
North_American_Vertical_Datum_1988
= 5103¶
-
OSU86F_ellipsoid
= 5032¶
-
OSU91A_ellipsoid
= 5033¶
-
Plessis_1817_ellipsoid
= 5027¶
-
Struve_1860_ellipsoid
= 5028¶
-
Undefined
= 0¶
-
User_Defined
= 32767¶
-
WGS_84_ellipsoid
= 5030¶
-
War_Office_ellipsoid
= 5029¶
-
Yellow_Sea_1956
= 5104¶
-
Module contents¶
Read and write TIFF(r) files.
Tifffile is a Python library to
store numpy arrays in TIFF (Tagged Image File Format) files, and
read image and metadata from TIFF-like files used in bioimaging.
Image and metadata can be read from TIFF, BigTIFF, OME-TIFF, STK, LSM, SGI, NIHImage, ImageJ, MicroManager, FluoView, ScanImage, SEQ, GEL, SVS, SCN, SIS, ZIF, QPI, NDPI, and GeoTIFF files.
Numpy arrays can be written to TIFF, BigTIFF, and ImageJ hyperstack compatible files in multi-page, memory-mappable, tiled, predicted, or compressed form.
Only a subset of the TIFF specification is supported, mainly uncompressed and losslessly compressed 1, 8, 16, 32 and 64-bit integer, 16, 32 and 64-bit float, grayscale and RGB(A) images. Specifically, reading slices of image data, CCITT and OJPEG compression, chroma subsampling without JPEG compression, or IPTC and XMP metadata are not implemented.
TIFF(r), the Tagged Image File Format, is a trademark and under control of Adobe Systems Incorporated. BigTIFF allows for files greater than 4 GB. STK, LSM, FluoView, SGI, SEQ, GEL, and OME-TIFF, are custom extensions defined by Molecular Devices (Universal Imaging Corporation), Carl Zeiss MicroImaging, Olympus, Silicon Graphics International, Media Cybernetics, Molecular Dynamics, and the Open Microscopy Environment consortium respectively.
For command line usage run python -m tifffile --help
- Author
- Organization
Laboratory for Fluorescence Dynamics, University of California, Irvine
- License
3-clause BSD
- Version
2019.7.26
Requirements¶
This release has been tested with the following requirements and dependencies (other versions may work):
Imagecodecs 2019.5.22 (optional; used for encoding and decoding LZW, JPEG, etc.)
Matplotlib 3.1 (optional; used for plotting)
Python 2.7 requires ‘futures’, ‘enum34’, and ‘pathlib’.
Revisions¶
- 2019.7.26
Pass 2869 tests. Fix infinite loop reading more than two tags of same code in IFD. Delay import of logging module.
- 2019.7.20
Fix OME-XML detection for files created by Imaris. Remove or replace assert statements.
- 2019.7.2
Do not write SampleFormat tag for unsigned data types. Write ByteCount tag values as SHORT or LONG if possible. Allow to specify axes in FileSequence pattern via group names. Add option to concurrently read FileSequence using threads. Derive TiffSequence from FileSequence. Use str(datetime.timedelta) to format Timer duration. Use perf_counter for Timer if possible.
- 2019.6.18
Fix reading planar RGB ImageJ files created by Bio-Formats. Fix reading single-file, multi-image OME-TIFF without UUID. Presume LSM stores uncompressed images contiguously per page. Reformat some complex expressions.
- 2019.5.30
Ignore invalid frames in OME-TIFF. Set default subsampling to (2, 2) for RGB JPEG compression. Fix reading and writing planar RGB JPEG compression. Replace buffered_read with FileHandle.read_segments. Include page or frame numbers in exceptions and warnings. Add Timer class.
- 2019.5.22
Add optional chroma subsampling for JPEG compression. Enable writing PNG, JPEG, JPEGXR, and JPEG2000 compression (WIP). Fix writing tiled images with WebP compression. Improve handling GeoTIFF sparse files.
- 2019.3.18
Fix regression decoding JPEG with RGB photometrics. Fix reading OME-TIFF files with corrupted but unused pages. Allow to load TiffFrame without specifying keyframe. Calculate virtual TiffFrames for non-BigTIFF ScanImage files > 2GB. Rename property is_chroma_subsampled to is_subsampled (breaking). Make more attributes and methods private (WIP).
- 2019.3.8
Fix MemoryError when RowsPerStrip > ImageLength. Fix SyntaxWarning on Python 3.8. Fail to decode JPEG to planar RGB (tentative). Separate public from private test files (WIP). Allow testing without data files or imagecodecs.
- 2019.2.22
Use imagecodecs-lite as a fallback for imagecodecs. Simplify reading numpy arrays from file. Use TiffFrames when reading arrays from page sequences. Support slices and iterators in TiffPageSeries sequence interface. Auto-detect uniform series. Use page hash to determine generic series. Turn off page cache (tentative). Pass through more parameters in imread. Discontinue movie parameter in imread and TiffFile (breaking). Discontinue bigsize parameter in imwrite (breaking). Raise TiffFileError in case of issues with TIFF structure. Return TiffFile.ome_metadata as XML (breaking). Ignore OME series when last dimensions are not stored in TIFF pages.
- 2019.2.10
Assemble IFDs in memory to speed-up writing on some slow media. Handle discontinued arguments fastij, multifile_close, and pages.
- 2019.1.30
Use black background in imshow. Do not write datetime tag by default (breaking). Fix OME-TIFF with SamplesPerPixel > 1. Allow 64-bit IFD offsets for NDPI (files > 4GB still not supported).
- 2019.1.4
Fix decoding deflate without imagecodecs.
- 2019.1.1
Update copyright year. Require imagecodecs >= 2018.12.16. Do not use JPEG tables from keyframe. Enable decoding large JPEG in NDPI. Decode some old-style JPEG. Reorder OME channel axis to match PlanarConfiguration storage. Return tiled images as contiguous arrays. Add decode_lzw proxy function for compatibility with old czifile module. Use dedicated logger.
- 2018.11.28
Make SubIFDs accessible as TiffPage.pages. Make parsing of TiffSequence axes pattern optional (breaking). Limit parsing of TiffSequence axes pattern to file names, not path names. Do not interpolate in imshow if image dimensions <= 512, else use bilinear. Use logging.warning instead of warnings.warn in many cases. Fix numpy FutureWarning for out == ‘memmap’. Adjust ZSTD and WebP compression to libtiff-4.0.10 (WIP). Decode old-style LZW with imagecodecs >= 2018.11.8. Remove TiffFile.qptiff_metadata (QPI metadata are per page). Do not use keyword arguments before variable positional arguments. Make either all or none return statements in a function return expression. Use pytest parametrize to generate tests. Replace test classes with functions.
- 2018.11.6
Rename imsave function to imwrite. Readd Python implementations of packints, delta, and bitorder codecs. Fix TiffFrame.compression AttributeError.
- 2018.10.18
Rename tiffile package to tifffile.
- 2018.10.10
Read ZIF, the Zoomable Image Format (WIP). Decode YCbCr JPEG as RGB (tentative). Improve restoration of incomplete tiles. Allow to write grayscale with extrasamples without specifying planarconfig. Enable decoding of PNG and JXR via imagecodecs. Deprecate 32-bit platforms (too many memory errors during tests).
- 2018.9.27
Read Olympus SIS (WIP). Allow to write non-BigTIFF files up to ~4 GB (fix). Fix parsing date and time fields in SEM metadata. Detect some circular IFD references. Enable WebP codecs via imagecodecs. Add option to read TiffSequence from ZIP containers. Remove TiffFile.isnative. Move TIFF struct format constants out of TiffFile namespace.
- 2018.8.31
Fix wrong TiffTag.valueoffset. Towards reading Hamamatsu NDPI (WIP). Enable PackBits compression of byte and bool arrays. Fix parsing NULL terminated CZ_SEM strings.
- 2018.8.24
Move tifffile.py and related modules into tiffile package. Move usage examples to module docstring. Enable multi-threading for compressed tiles and pages by default. Add option to concurrently decode image tiles using threads. Do not skip empty tiles (fix). Read JPEG and J2K compressed strips and tiles. Allow floating-point predictor on write. Add option to specify subfiletype on write. Depend on imagecodecs package instead of _tifffile, lzma, etc modules. Remove reverse_bitorder, unpack_ints, and decode functions. Use pytest instead of unittest.
- 2018.6.20
Save RGBA with unassociated extrasample by default (breaking). Add option to specify ExtraSamples values.
- 2018.6.17 (included with 0.15.1)
Towards reading JPEG and other compressions via imagecodecs package (WIP). Read SampleFormat VOID as UINT. Add function to validate TIFF using ‘jhove -m TIFF-hul’. Save bool arrays as bilevel TIFF. Accept pathlib.Path as filenames. Move ‘software’ argument from TiffWriter __init__ to save. Raise DOS limit to 16 TB. Lazy load LZMA and ZSTD compressors and decompressors. Add option to save IJMetadata tags. Return correct number of pages for truncated series (fix). Move EXIF tags to TIFF.TAG as per TIFF/EP standard.
- 2018.2.18
Always save RowsPerStrip and Resolution tags as required by TIFF standard. Do not use badly typed ImageDescription. Coherce bad ASCII string tags to bytes. Tuning of __str__ functions. Fix reading ‘undefined’ tag values. Read and write ZSTD compressed data. Use hexdump to print byte strings. Determine TIFF byte order from data dtype in imsave. Add option to specify RowsPerStrip for compressed strips. Allow memory-map of arrays with non-native byte order. Attempt to handle ScanImage <= 5.1 files. Restore TiffPageSeries.pages sequence interface. Use numpy.frombuffer instead of fromstring to read from binary data. Parse GeoTIFF metadata. Add option to apply horizontal differencing before compression. Towards reading PerkinElmer QPI (QPTIFF, no test files). Do not index out of bounds data in tifffile.c unpackbits and decodelzw.
- 2017.9.29
Many backward incompatible changes improving speed and resource usage: Add detail argument to __str__ function. Remove info functions. Fix potential issue correcting offsets of large LSM files with positions. Remove TiffFile sequence interface; use TiffFile.pages instead. Do not make tag values available as TiffPage attributes. Use str (not bytes) type for tag and metadata strings (WIP). Use documented standard tag and value names (WIP). Use enums for some documented TIFF tag values. Remove ‘memmap’ and ‘tmpfile’ options; use out=’memmap’ instead. Add option to specify output in asarray functions. Add option to concurrently decode pages using threads. Add TiffPage.asrgb function (WIP). Do not apply colormap in asarray. Remove ‘colormapped’, ‘rgbonly’, and ‘scale_mdgel’ options from asarray. Consolidate metadata in TiffFile _metadata functions. Remove non-tag metadata properties from TiffPage. Add function to convert LSM to tiled BIN files. Align image data in file. Make TiffPage.dtype a numpy.dtype. Add ‘ndim’ and ‘size’ properties to TiffPage and TiffPageSeries. Allow imsave to write non-BigTIFF files up to ~4 GB. Only read one page for shaped series if possible. Add memmap function to create memory-mapped array stored in TIFF file. Add option to save empty arrays to TIFF files. Add option to save truncated TIFF files. Allow single tile images to be saved contiguously. Add optional movie mode for files with uniform pages. Lazy load pages. Use lightweight TiffFrame for IFDs sharing properties with key TiffPage. Move module constants to ‘TIFF’ namespace (speed up module import). Remove ‘fastij’ option from TiffFile. Remove ‘pages’ parameter from TiffFile. Remove TIFFfile alias. Deprecate Python 2. Require enum34 and futures packages on Python 2.7. Remove Record class and return all metadata as dict instead. Add functions to parse STK, MetaSeries, ScanImage, SVS, Pilatus metadata. Read tags from EXIF and GPS IFDs. Use pformat for tag and metadata values. Fix reading some UIC tags. Do not modify input array in imshow (fix). Fix Python implementation of unpack_ints.
- 2017.5.23
Write correct number of SampleFormat values (fix). Use Adobe deflate code to write ZIP compressed files. Add option to pass tag values as packed binary data for writing. Defer tag validation to attribute access. Use property instead of lazyattr decorator for simple expressions.
- 2017.3.17
Write IFDs and tag values on word boundaries. Read ScanImage metadata. Remove is_rgb and is_indexed attributes from TiffFile. Create files used by doctests.
- 2017.1.12 (included with scikit-image 0.14.x)
Read Zeiss SEM metadata. Read OME-TIFF with invalid references to external files. Rewrite C LZW decoder (5x faster). Read corrupted LSM files missing EOI code in LZW stream.
- 2017.1.1
…
Refer to the CHANGES file for older revisions.
Notes
The API is not stable yet and might change between revisions.
Tested on little-endian platforms only.
Python 2.7 and 32-bit versions are deprecated.
Tifffile relies on the imagecodecs package for encoding and decoding LZW, JPEG, and other compressed images. The imagecodecs-lite package, which is easier to build, can be used for decoding LZW compressed images instead.
Several TIFF-like formats do not strictly adhere to the TIFF6 specification, some of which allow file or data sizes to exceed the 4 GB limit:
BigTIFF is identified by version number 43 and uses different file header, IFD, and tag structures with 64-bit offsets. It adds more data types. Tifffile can read and write BigTIFF files.
ImageJ hyperstacks store all image data, which may exceed 4 GB, contiguously after the first IFD. Files > 4 GB contain one IFD only. The size (shape and dtype) of the up to 6-dimensional image data can be determined from the ImageDescription tag of the first IFD, which is Latin-1 encoded. Tifffile can read and write ImageJ hyperstacks.
OME-TIFF stores up to 8-dimensional data in one or multiple TIFF of BigTIFF files. The 8-bit UTF-8 encoded OME-XML metadata found in the ImageDescription tag of the first IFD defines the position of TIFF IFDs in the high dimensional data. Tifffile can read OME-TIFF files, except when the OME-XML metadata is stored in a separate file.
LSM stores all IFDs below 4 GB but wraps around 32-bit StripOffsets. The StripOffsets of each series and position require separate unwrapping. The StripByteCounts tag contains the number of bytes for the uncompressed data. Tifffile can read large LSM files.
NDPI uses some 64-bit offsets in the file header, IFD, and tag structures and might require correcting 32-bit offsets found in tags. JPEG compressed tiles with dimensions > 65536 are not readable with libjpeg. Tifffile can read NDPI files < 4 GB and decompress large JPEG tiles using the imagecodecs library on Windows.
ScanImage optionally allows corrupt non-BigTIFF files > 2 GB. The values of StripOffsets and StripByteCounts can be recovered using the constant differences of the offsets of IFD and tag values throughout the file. Tifffile can read such files on Python 3 if the image data is stored contiguously in each page.
GeoTIFF sparse files allow strip or tile offsets and byte counts to be 0. Such segments are implicitly set to 0 or the NODATA value on reading. Tifffile can read GeoTIFF sparse files.
Other libraries for reading scientific TIFF files from Python:
PyMca.TiffIO.py (same as fabio.TiffIO)
Some libraries are using tifffile to write OME-TIFF files:
References
TIFF 6.0 Specification and Supplements. Adobe Systems Incorporated. https://www.adobe.io/open/standards/TIFF.html
TIFF File Format FAQ. https://www.awaresystems.be/imaging/tiff/faq.html
MetaMorph Stack (STK) Image File Format. http://mdc.custhelp.com/app/answers/detail/a_id/18862
Image File Format Description LSM 5/7 Release 6.0 (ZEN 2010). Carl Zeiss MicroImaging GmbH. BioSciences. May 10, 2011
The OME-TIFF format. https://docs.openmicroscopy.org/ome-model/5.6.4/ome-tiff/
UltraQuant(r) Version 6.0 for Windows Start-Up Guide. http://www.ultralum.com/images%20ultralum/pdf/UQStart%20Up%20Guide.pdf
Micro-Manager File Formats. https://micro-manager.org/wiki/Micro-Manager_File_Formats
Tags for TIFF and Related Specifications. Digital Preservation. https://www.loc.gov/preservation/digital/formats/content/tiff_tags.shtml
ScanImage BigTiff Specification - ScanImage 2016. http://scanimage.vidriotechnologies.com/display/SI2016/ ScanImage+BigTiff+Specification
CIPA DC-008-2016: Exchangeable image file format for digital still cameras: Exif Version 2.31. http://www.cipa.jp/std/documents/e/DC-008-Translation-2016-E.pdf
ZIF, the Zoomable Image File format. http://zif.photo/
GeoTIFF File Format https://www.gdal.org/frmt_gtiff.html
Examples
Save a 3D numpy array to a multi-page, 16-bit grayscale TIFF file:
>>> data = numpy.random.randint(0, 2**12, (4, 301, 219), 'uint16')
>>> imwrite('temp.tif', data, photometric='minisblack')
Read the whole image stack from the TIFF file as numpy array:
>>> image_stack = imread('temp.tif')
>>> image_stack.shape
(4, 301, 219)
>>> image_stack.dtype
dtype('uint16')
Read the image from first page in the TIFF file as numpy array:
>>> image = imread('temp.tif', key=0)
>>> image.shape
(301, 219)
Read images from a sequence of TIFF files as numpy array:
>>> image_sequence = imread(['temp.tif', 'temp.tif'])
>>> image_sequence.shape
(2, 4, 301, 219)
Save a numpy array to a single-page RGB TIFF file:
>>> data = numpy.random.randint(0, 255, (256, 256, 3), 'uint8')
>>> imwrite('temp.tif', data, photometric='rgb')
Save a floating-point array and metadata, using zlib compression:
>>> data = numpy.random.rand(2, 5, 3, 301, 219).astype('float32')
>>> imwrite('temp.tif', data, compress=6, metadata={'axes': 'TZCYX'})
Save a volume with xyz voxel size 2.6755x2.6755x3.9474 碌m^3 to an ImageJ file:
>>> volume = numpy.random.randn(57*256*256).astype('float32')
>>> volume.shape = 1, 57, 1, 256, 256, 1 # dimensions in TZCYXS order
>>> imwrite('temp.tif', volume, imagej=True, resolution=(1./2.6755, 1./2.6755),
... metadata={'spacing': 3.947368, 'unit': 'um'})
Get the shape and dtype of the images stored in the TIFF file:
>>> tif = TiffFile('temp.tif')
>>> len(tif.pages) # number of pages in the file
57
>>> page = tif.pages[0] # get shape and dtype of the image in the first page
>>> page.shape
(256, 256)
>>> page.dtype
dtype('float32')
>>> page.axes
'YX'
>>> series = tif.series[0] # get shape and dtype of the first image series
>>> series.shape
(57, 256, 256)
>>> series.dtype
dtype('float32')
>>> series.axes
'ZYX'
>>> tif.close()
Read hyperstack and metadata from the ImageJ file:
>>> with TiffFile('temp.tif') as tif:
... imagej_hyperstack = tif.asarray()
... imagej_metadata = tif.imagej_metadata
>>> imagej_hyperstack.shape
(57, 256, 256)
>>> imagej_metadata['slices']
57
Read the “XResolution” tag from the first page in the TIFF file:
>>> with TiffFile('temp.tif') as tif:
... tag = tif.pages[0].tags['XResolution']
>>> tag.value
(2000, 5351)
>>> tag.name
'XResolution'
>>> tag.code
282
>>> tag.count
1
>>> tag.dtype
'2I'
>>> tag.valueoffset
360
Read images from a selected range of pages:
>>> image = imread('temp.tif', key=range(4, 40, 2))
>>> image.shape
(18, 256, 256)
Create an empty TIFF file and write to the memory-mapped numpy array:
>>> memmap_image = memmap('temp.tif', shape=(256, 256), dtype='float32')
>>> memmap_image[255, 255] = 1.0
>>> memmap_image.flush()
>>> memmap_image.shape, memmap_image.dtype
((256, 256), dtype('float32'))
>>> del memmap_image
Memory-map image data of the first page in the TIFF file:
>>> memmap_image = memmap('temp.tif', page=0)
>>> memmap_image[255, 255]
1.0
>>> del memmap_image
Successively append images to a BigTIFF file, which can exceed 4 GB:
>>> data = numpy.random.randint(0, 255, (5, 2, 3, 301, 219), 'uint8')
>>> with TiffWriter('temp.tif', bigtiff=True) as tif:
... for i in range(data.shape[0]):
... tif.save(data[i], compress=6, photometric='minisblack')
Iterate over pages and tags in the TIFF file and successively read images:
>>> with TiffFile('temp.tif') as tif:
... image_stack = tif.asarray()
... for page in tif.pages:
... for tag in page.tags.values():
... tag_name, tag_value = tag.name, tag.value
... image = page.asarray()
Save two image series to a TIFF file:
>>> data0 = numpy.random.randint(0, 255, (301, 219, 3), 'uint8')
>>> data1 = numpy.random.randint(0, 255, (5, 301, 219), 'uint16')
>>> with TiffWriter('temp.tif') as tif:
... tif.save(data0, compress=6, photometric='rgb')
... tif.save(data1, compress=6, photometric='minisblack', contiguous=False)
Read the second image series from the TIFF file:
>>> series1 = imread('temp.tif', series=1)
>>> series1.shape
(5, 301, 219)
Read an image stack from a series of TIFF files with a file name pattern:
>>> imwrite('temp_C001T001.tif', numpy.random.rand(64, 64))
>>> imwrite('temp_C001T002.tif', numpy.random.rand(64, 64))
>>> image_sequence = TiffSequence('temp_C001*.tif', pattern='axes')
>>> image_sequence.shape
(1, 2)
>>> image_sequence.axes
'CT'
>>> data = image_sequence.asarray()
>>> data.shape
(1, 2, 64, 64)
-
tifffile.
imwrite
(file, data=None, shape=None, dtype=None, **kwargs)¶ Write numpy array to TIFF file.
Refer to the TiffWriter class and its asarray function for documentation.
A BigTIFF file is created if the data size in bytes is larger than 4 GB minus 32 MB (for metadata), and ‘bigtiff’ is not specified, and ‘imagej’ or ‘truncate’ are not enabled.
- Parameters
file (str or binary stream) – File name or writable binary stream, such as an open file or BytesIO.
data (array_like) – Input image. The last dimensions are assumed to be image depth, height, width, and samples. If None, an empty array of the specified shape and dtype is saved to file. Unless ‘byteorder’ is specified in ‘kwargs’, the TIFF file byte order is determined from the data’s dtype or the dtype argument.
shape (tuple) – If ‘data’ is None, shape of an empty array to save to the file.
dtype (numpy.dtype) – If ‘data’ is None, datatype of an empty array to save to the file.
kwargs (dict) – Parameters ‘append’, ‘byteorder’, ‘bigtiff’, and ‘imagej’, are passed to the TiffWriter constructor. Other parameters are passed to the TiffWriter.save function.
- Returns
offset, bytecount – If the image data are written contiguously, return offset and bytecount of image data in the file.
- Return type
-
tifffile.
imread
(files, **kwargs)¶ Return image data from TIFF file(s) as numpy array.
Refer to the TiffFile and TiffSequence classes and their asarray functions for documentation.
- Parameters
files (str, binary stream, or sequence) – File name, seekable binary stream, glob pattern, or sequence of file names.
kwargs (dict) – Parameters ‘name’, ‘offset’, ‘size’, ‘multifile’, and ‘is_ome’ are passed to the TiffFile constructor. The ‘pattern’ and ‘ioworkers’ parameters are passed to the TiffSequence constructor. Other parameters are passed to the asarray functions. The first image series in the file is returned if no arguments are provided.
-
tifffile.
imshow
(data, photometric=None, planarconfig=None, bitspersample=None, interpolation=None, cmap=None, vmin=None, vmax=None, figure=None, title=None, dpi=96, subplot=None, maxdim=None, **kwargs)¶ Plot n-dimensional images using matplotlib.pyplot.
Return figure, subplot and plot axis. Requires pyplot already imported C{from matplotlib import pyplot}.
- Parameters
data (nd array) – The image data.
photometric ({'MINISWHITE', 'MINISBLACK', 'RGB', or 'PALETTE'}) – The color space of the image data.
planarconfig ({'CONTIG' or 'SEPARATE'}) – Defines how components of each pixel are stored.
bitspersample (int) – Number of bits per channel in integer RGB images.
interpolation (str) – The image interpolation method used in matplotlib.imshow. By default, ‘nearest’ will be used for image dimensions <= 512, else ‘bilinear’.
cmap (str or matplotlib.colors.Colormap) – The colormap maps non-RGBA scalar data to colors.
vmax (vmin,) – Data range covered by the colormap. By default, the complete range of the data is covered.
figure (matplotlib.figure.Figure) – Matplotlib figure to use for plotting.
title (str) – Window and subplot title.
subplot (int) – A matplotlib.pyplot.subplot axis.
maxdim (int) – Maximum image width and length.
kwargs (dict) – Additional arguments for matplotlib.pyplot.imshow.
-
tifffile.
memmap
(filename, shape=None, dtype=None, page=None, series=0, mode='r+', **kwargs)¶ Return memory-mapped numpy array stored in TIFF file.
Memory-mapping requires data stored in native byte order, without tiling, compression, predictors, etc. If ‘shape’ and ‘dtype’ are provided, existing files will be overwritten or appended to depending on the ‘append’ parameter. Otherwise the image data of a specified page or series in an existing file will be memory-mapped. By default, the image data of the first page series is memory-mapped. Call flush() to write any changes in the array to the file. Raise ValueError if the image data in the file is not memory-mappable.
- Parameters
filename (str) – Name of the TIFF file which stores the array.
shape (tuple) – Shape of the empty array.
dtype (numpy.dtype) – Datatype of the empty array.
page (int) – Index of the page which image data to memory-map.
series (int) – Index of the page series which image data to memory-map.
mode ({'r+', 'r', 'c'}) – The file open mode. Default is to open existing file for reading and writing (‘r+’).
kwargs (dict) – Additional parameters passed to imwrite() or TiffFile().
-
class
tifffile.
TiffFile
(arg, name=None, offset=None, size=None, multifile=True, _useframes=None, **kwargs)¶ Bases:
object
Read image and metadata from TIFF file.
TiffFile instances must be closed using the ‘close’ method, which is automatically called when using the ‘with’ context manager.
TiffFile instances are not thread-safe.
-
pages
¶ Sequence of TIFF pages in file.
- Type
TiffPages
-
series
¶ Sequences of closely related TIFF pages. These are computed from OME, LSM, ImageJ, etc. metadata or based on similarity of page properties such as shape, dtype, and compression.
- Type
list of TiffPageSeries
-
is_flag
¶ If True, file is of a certain format. Flags are: bigtiff, uniform, shaped, ome, imagej, stk, lsm, fluoview, nih, vista, micromanager, metaseries, mdgel, mediacy, tvips, fei, sem, scn, svs, scanimage, andor, epics, ndpi, pilatus, qpi.
- Type
-
All attributes are read-only.
-
andor_metadata
¶ Return Andor tags as dict.
-
asarray
(key=None, series=None, out=None, validate=True, maxworkers=None)¶ Return image data from selected TIFF page(s) as numpy array.
By default, the data from the first series is returned.
- Parameters
key (int, slice, or sequence of indices) – Defines which pages to return as array. If None (default), data from a series (default 0) is returned. If not None, data from the specified pages in the whole file (if ‘series’ is None) or a specified series are returned as a stacked array. Requesting an array from multiple pages that are not compatible wrt. shape, dtype, compression etc is undefined, i.e. may crash or return incorrect values.
series (int or TiffPageSeries) – Defines which series of pages to return as array.
out (numpy.ndarray, str, or file-like object) – Buffer where image data will be saved. If None (default), a new array will be created. If numpy.ndarray, a writable array of compatible dtype and shape. If ‘memmap’, directly memory-map the image data in the TIFF file if possible; else create a memory-mapped array in a temporary file. If str or open file, the file name or file object used to create a memory-map to an array stored in a binary file on disk.
validate (bool) – If True (default), validate various tags. Passed to TiffPage.asarray().
maxworkers (int or None) – Maximum number of threads to concurrently get data from multiple pages or compressed segments. If None (default), up to half the CPU cores are used. If 1, multi-threading is disabled. Reading data from file is limited to a single thread. Using multiple threads can significantly speed up this function if the bottleneck is decoding compressed data, e.g. in case of large LZW compressed LSM files or JPEG compressed tiled slides. If the bottleneck is I/O or pure Python code, using multiple threads might be detrimental.
- Returns
Image data from the specified pages. See the TiffPage.asarray function for operations that are applied (or not) to the raw data stored in the file.
- Return type
numpy.ndarray
-
byteorder
¶
-
close
()¶ Close open file handle(s).
-
epics_metadata
¶ Return EPICS areaDetector tags as dict.
-
fei_metadata
¶ Attribute whose value is computed on first access.
-
filehandle
¶ Return file handle.
-
filename
¶ Return name of file handle.
-
flags
¶ Attribute whose value is computed on first access.
-
fluoview_metadata
¶ Attribute whose value is computed on first access.
-
fstat
¶ Attribute whose value is computed on first access.
-
geotiff_metadata
¶ Return GeoTIFF metadata from first page as dict.
-
imagej_metadata
¶ Attribute whose value is computed on first access.
-
is_appendable
¶ Return if pages can be appended to file without corrupting.
-
is_bigtiff
¶
-
is_mdgel
¶ Attribute whose value is computed on first access.
-
is_uniform
¶ Attribute whose value is computed on first access.
-
lsm_metadata
¶ Return LSM metadata from CZ_LSMINFO tag as dict.
-
mdgel_metadata
¶ Attribute whose value is computed on first access.
-
metaseries_metadata
¶ Attribute whose value is computed on first access.
-
micromanager_metadata
¶ Attribute whose value is computed on first access.
-
nih_metadata
¶ Attribute whose value is computed on first access.
-
ome_metadata
¶ Return OME XML.
-
pilatus_metadata
¶ Attribute whose value is computed on first access.
-
scanimage_metadata
¶ Attribute whose value is computed on first access.
-
sem_metadata
¶ Return SEM metadata from CZ_SEM tag as dict.
-
series
Attribute whose value is computed on first access.
-
shaped_metadata
¶ Attribute whose value is computed on first access.
-
sis_metadata
¶ Attribute whose value is computed on first access.
-
stk_metadata
¶ Attribute whose value is computed on first access.
-
tvips_metadata
¶ Return TVIPS tag as dict.
-
-
class
tifffile.
TiffSequence
(files=None, container=None, sort=None, pattern=None, imread=<function imread>)¶ Bases:
tifffile.tifffile.FileSequence
Series of TIFF files.
-
class
tifffile.
TiffWriter
(file, bigtiff=False, byteorder=None, append=False, imagej=False)¶ Bases:
object
Write numpy arrays to TIFF file.
TiffWriter instances must be closed using the ‘close’ method, which is automatically called when using the ‘with’ context manager.
TiffWriter instances are not thread-safe.
TiffWriter’s main purpose is saving nD numpy array’s as TIFF, not to create any possible TIFF format. Specifically, SubIFDs, ExifIFD, and GPSIFD tags are not supported.
-
close
()¶ Write remaining pages and close file handle.
-
save
(data=None, shape=None, dtype=None, returnoffset=False, photometric=None, planarconfig=None, extrasamples=None, tile=None, contiguous=True, align=16, truncate=False, compress=0, rowsperstrip=None, predictor=False, subsampling=None, colormap=None, description=None, datetime=None, resolution=None, subfiletype=0, software='tifffile.py', metadata={}, ijmetadata=None, extratags=())¶ Write numpy array and tags to TIFF file.
The data shape’s last dimensions are assumed to be image depth, height (length), width, and samples. If a colormap is provided, the data’s dtype must be uint8 or uint16 and the data values are indices into the last dimension of the colormap. If ‘shape’ and ‘dtype’ are specified, an empty array is saved. This option cannot be used with compression or multiple tiles. Image data are written uncompressed in one strip per plane by default. Dimensions larger than 2 to 4 (depending on photometric mode, planar configuration, and SGI mode) are flattened and saved as separate pages. The SampleFormat and BitsPerSample tags are derived from the data type.
- Parameters
data (numpy.ndarray or None) – Input image array.
shape (tuple or None) – Shape of the empty array to save. Used only if ‘data’ is None.
dtype (numpy.dtype or None) – Datatype of the empty array to save. Used only if ‘data’ is None.
returnoffset (bool) – If True and the image data in the file is memory-mappable, return the offset and number of bytes of the image data in the file.
photometric ({'MINISBLACK', 'MINISWHITE', 'RGB', 'PALETTE', 'CFA'}) – The color space of the image data. By default, this setting is inferred from the data shape and the value of colormap. For CFA images, DNG tags must be specified in ‘extratags’.
planarconfig ({'CONTIG', 'SEPARATE'}) – Specifies if samples are stored interleaved or in separate planes. By default, this setting is inferred from the data shape. If this parameter is set, extra samples are used to store grayscale images. ‘CONTIG’: last dimension contains samples. ‘SEPARATE’: third last dimension contains samples.
extrasamples (tuple of {'UNSPECIFIED', 'ASSOCALPHA', 'UNASSALPHA'}) – Defines the interpretation of extra components in pixels. ‘UNSPECIFIED’: no transparency information (default). ‘ASSOCALPHA’: single, true transparency with pre-multiplied color. ‘UNASSALPHA’: independent transparency masks.
tile (tuple of int) – The shape ([depth,] length, width) of image tiles to write. If None (default), image data are written in strips. The tile length and width must be a multiple of 16. If the tile depth is provided, the SGI ImageDepth and TileDepth tags are used to save volume data. Unless a single tile is used, tiles cannot be used to write contiguous files. Few software can read the SGI format, e.g. MeVisLab.
contiguous (bool) – If True (default) and the data and parameters are compatible with previous ones, if any, the image data are stored contiguously after the previous one. In that case, ‘photometric’, ‘planarconfig’, ‘rowsperstrip’, are ignored. Metadata such as ‘description’, ‘metadata’, ‘datetime’, and ‘extratags’ are written to the first page of a contiguous series only.
align (int) – Byte boundary on which to align the image data in the file. Default 16. Use mmap.ALLOCATIONGRANULARITY for memory-mapped data. Following contiguous writes are not aligned.
truncate (bool) – If True, only write the first page including shape metadata if possible (uncompressed, contiguous, not tiled). Other TIFF readers will only be able to read part of the data.
compress (int or str or (str, int)) – If 0 (default), data are written uncompressed. If 0-9, the level of ADOBE_DEFLATE compression. If a str, one of TIFF.COMPESSORS, e.g. ‘LZMA’ or ‘ZSTD’. If a tuple, the first item is one of TIFF.COMPESSORS and the second item is the compression level. Compression cannot be used to write contiguous files. Compressors may require certain data shapes, types or value ranges. For example, JPEG requires grayscale or RGB(A), uint8 or 12-bit uint16. JPEG compression is experimental. JPEG markers and TIFF tags may not match.
rowsperstrip (int) – The number of rows per strip. By default, strips will be ~64 KB if compression is enabled, else rowsperstrip is set to the image length. Bilevel images are always stored in one strip per plane.
predictor (bool) – If True, apply horizontal differencing or floating-point predictor before compression.
subsampling ({(1, 1), (2, 1), (2, 2), (4, 1)}) – The horizontal and vertical subsampling factors used for the chrominance components of images. The default is (2, 2). Currently applies to JPEG compression of RGB images only. Images will be stored in YCbCr colorspace. Segment widths must be a multiple of the horizontal factor. Segment lengths and rowsperstrip must be a multiple of the vertical factor.
colormap (numpy.ndarray) – RGB color values for the corresponding data value. Must be of shape (3, 2**(data.itemsize*8)) and dtype uint16.
description (str) – The subject of the image. Must be 7-bit ASCII. Cannot be used with the ImageJ format. Saved with the first page only.
datetime (datetime, str, or bool) – Date and time of image creation in ‘%Y:%m:%d %H:%M:%S’ format or datetime object. Else if True, the current date and time is used. Saved with the first page only.
resolution ((float, float[, str]) or ((int, int), (int, int)[, str])) – X and Y resolutions in pixels per resolution unit as float or rational numbers. A third, optional parameter specifies the resolution unit, which must be None (default for ImageJ), ‘INCH’ (default), or ‘CENTIMETER’.
subfiletype (int) – Bitfield to indicate the kind of data. Set bit 0 if the image is a reduced-resolution version of another image. Set bit 1 if the image is part of a multi-page image. Set bit 2 if the image is transparency mask for another image (photometric must be MASK, SamplesPerPixel and BitsPerSample must be 1).
software (str) – Name of the software used to create the file. Must be 7-bit ASCII. Saved with the first page only.
metadata (dict) – Additional metadata to be saved along with shape information in JSON or ImageJ formats in an ImageDescription tag. If None, do not write a second ImageDescription tag. Strings must be 7-bit ASCII. Saved with the first page only.
ijmetadata (dict) – Additional metadata to be saved in application specific IJMetadata and IJMetadataByteCounts tags. Refer to the imagej_metadata_tag function for valid keys and values. Saved with the first page only.
extratags (sequence of tuples) –
Additional tags as [(code, dtype, count, value, writeonce)].
- codeint
The TIFF tag Id.
- dtypestr
Data type of items in ‘value’ in Python struct format. One of B, s, H, I, 2I, b, h, i, 2i, f, d, Q, or q.
- countint
Number of data values. Not used for string or byte string values.
- valuesequence
’Count’ values compatible with ‘dtype’. Byte strings must contain count values of dtype packed as binary data.
- writeoncebool
If True, the tag is written to the first page only.
-
-
class
tifffile.
TiffPage
(parent, index, keyframe=None)¶ Bases:
object
TIFF image file directory (IFD).
-
axes
¶ Axes label codes: ‘X’ width, ‘Y’ height, ‘S’ sample, ‘I’ image series|page|plane, ‘Z’ depth, ‘C’ color|em-wavelength|channel, ‘E’ ex-wavelength|lambda, ‘T’ time, ‘R’ region|tile, ‘A’ angle, ‘P’ phase, ‘H’ lifetime, ‘L’ exposure, ‘V’ event, ‘Q’ unknown, ‘_’ missing
- Type
Dictionary of tags in IFD. {tag.name: TiffTag}
- Type
-
colormap
¶ Color look up table, if exists.
- Type
numpy.ndarray
-
All attributes are read-only.
Notes
The internal, normalized ‘_shape’ attribute is 6 dimensional:
0 : number planes/images (stk, ij). 1 : planar samplesperpixel. 2 : imagedepth Z (sgi). 3 : imagelength Y. 4 : imagewidth X. 5 : contig samplesperpixel.
Attribute whose value is computed on first access.
-
asarray
(out=None, squeeze=True, lock=None, reopen=True, maxsize=None, maxworkers=None, validate=True)¶ Read image data from file and return as numpy array.
Raise ValueError if format is unsupported.
- Parameters
out (numpy.ndarray, str, or file-like object) – Buffer where image data will be saved. If None (default), a new array will be created. If numpy.ndarray, a writable array of compatible dtype and shape. If ‘memmap’, directly memory-map the image data in the TIFF file if possible; else create a memory-mapped array in a temporary file. If str or open file, the file name or file object used to create a memory-map to an array stored in a binary file on disk.
squeeze (bool) – If True (default), all length-1 dimensions (except X and Y) are squeezed out from the array. If False, the shape of the returned array might be different from the page.shape.
lock ({RLock, NullContext}) – A reentrant lock used to synchronize seeks and reads from file. If None (default), the lock of the parent’s filehandle is used.
reopen (bool) – If True (default) and the parent file handle is closed, the file is temporarily re-opened and closed if no exception occurs.
maxsize (int) – Maximum size of data before a ValueError is raised. Can be used to catch DOS. Default: 16 TB.
maxworkers (int or None) – Maximum number of threads to concurrently decode compressed segments. If None (default), up to half the CPU cores are used. See remarks in TiffFile.asarray.
validate (bool) – If True (default), validate various parameters. If None, only validate parameters and return None.
- Returns
Numpy array of decompressed, depredicted, and unpacked image data read from Strip/Tile Offsets/ByteCounts, formatted according to shape and dtype metadata found in tags and parameters. Photometric conversion, pre-multiplied alpha, orientation, and colorimetry corrections are not applied. Specifically, CMYK images are not converted to RGB, MinIsWhite images are not inverted, and color palettes are not applied. An exception are YCbCr JPEG compressed images, which will be converted to RGB.
- Return type
numpy.ndarray
-
aspage
()¶ Return self.
-
asrgb
(uint8=False, alpha=None, colormap=None, dmin=None, dmax=None, **kwargs)¶ Return image data as RGB(A).
Work in progress.
-
bitspersample
= 1¶
-
colormap
= None
-
compression
= 1¶
-
decode
¶ Attribute whose value is computed on first access.
-
description
= ''¶
-
description1
= ''¶
Attribute whose value is computed on first access.
-
extrasamples
= 1¶
-
fillorder
= 1¶
-
flags
¶ Attribute whose value is computed on first access.
Attribute whose value is computed on first access.
-
hash
¶ Return checksum to identify pages in same series.
-
imagedepth
= 1¶
-
imagelength
= 0¶
-
imagewidth
= 0¶
-
is_andor
¶ Page contains Andor Technology tags.
-
is_contiguous
¶ Attribute whose value is computed on first access.
-
is_epics
¶ Page contains EPICS areaDetector tags.
-
is_fei
¶ Page contains SFEG or HELIOS metadata.
-
is_final
¶ Attribute whose value is computed on first access.
-
is_fluoview
¶ Page contains FluoView MM_STAMP tag.
-
is_geotiff
¶ Page contains GeoTIFF metadata.
-
is_imagej
¶ Attribute whose value is computed on first access.
-
is_lsm
¶ Page contains CZ_LSMINFO tag.
-
is_mask
¶ Page is transparency mask for another image.
-
is_mdgel
¶ Page contains MDFileTag tag.
-
is_mediacy
¶ Page contains Media Cybernetics Id tag.
-
is_memmappable
¶ Attribute whose value is computed on first access.
-
is_metaseries
¶ Page contains MDS MetaSeries metadata in ImageDescription tag.
-
is_micromanager
¶ Page contains Micro-Manager metadata.
-
is_mrc
¶ Page is part of Mixed Raster Content.
-
is_multipage
¶ Page is part of multi-page image.
-
is_ndpi
¶ Attribute whose value is computed on first access.
-
is_nih
¶ Page contains NIH image header.
-
is_ome
¶ Page contains OME-XML in ImageDescription tag.
-
is_pilatus
¶ Page contains Pilatus tags.
-
is_qpi
¶ Page contains PerkinElmer tissue images metadata.
-
is_reduced
¶ Page is reduced image of another image.
-
is_scanimage
¶ Page contains ScanImage metadata.
-
is_scn
¶ Page contains Leica SCN XML in ImageDescription tag.
-
is_sem
¶ Page contains Zeiss SEM metadata.
-
is_sgi
¶ Page contains SGI image and tile depth tags.
-
is_shaped
¶ Attribute whose value is computed on first access.
-
is_sis
¶ Page contains Olympus SIS metadata.
-
is_stk
¶ Page contains UIC2Tag tag.
-
is_subsampled
¶ Page contains chroma subsampled image.
-
is_svs
¶ Page contains Aperio metadata.
-
is_tiled
¶ Page contains tiled image.
-
is_tvips
¶ Page contains TVIPS metadata.
-
is_vista
¶ Software tag is ‘ISS Vista’.
-
keyframe
¶ Return keyframe, self.
-
ndim
¶ Return number of array dimensions.
Attribute whose value is computed on first access.
-
nodata
= 0¶
-
pages
¶ Attribute whose value is computed on first access.
-
photometric
= 0¶
-
planarconfig
= 1¶
-
predictor
= 1¶
-
rowsperstrip
= 4294967295¶
-
sampleformat
= 1¶
-
samplesperpixel
= 1¶
-
size
¶ Return number of elements in array.
-
software
= ''¶
-
subfiletype
= 0¶
-
tiledepth
= 1¶
-
tilelength
= 0¶
-
tilewidth
= 0¶
-
-
class
tifffile.
TiffPageSeries
(pages, shape, dtype, axes, parent=None, name=None, transform=None, kind=None, truncated=False)¶ Bases:
object
Series of TIFF pages with compatible shape and data type.
-
pages
¶ Sequence of TiffPages in series.
- Type
list of TiffPage
-
dtype
¶ Data type (native byte order) of the image array in series.
- Type
numpy.dtype
-
asarray
(out=None)¶ Return image data from series of TIFF pages as numpy array.
-
ndim
¶ Return number of array dimensions.
-
offset
Attribute whose value is computed on first access.
-
pages
Return sequence of all pages in series.
-
size
¶ Return number of elements in array.
-
-
class
tifffile.
TiffFrame
(parent, index, offset=None, keyframe=None, offsets=None, bytecounts=None)¶ Bases:
object
Lightweight TIFF image file directory (IFD).
Only a limited number of tag values are read from file, e.g. StripOffsets, and StripByteCounts. Other tag values are assumed to be identical with a specified TiffPage instance, the keyframe.
TiffFrame is intended to reduce resource usage and speed up reading image data from file, not for introspection of metadata.
Not compatible with Python 2.
-
asarray
(*args, **kwargs)¶ Read image data from file and return as numpy array.
-
aspage
()¶ Return TiffPage from file.
-
asrgb
(*args, **kwargs)¶ Read image data from file and return RGB image as numpy array.
-
hash
¶ Return checksum to identify pages in same series.
-
index
¶
-
is_contiguous
¶ Return offset and size of contiguous data, else None.
-
is_mdgel
= False¶
-
is_memmappable
¶ Return if page’s image data in file can be memory-mapped.
-
keyframe
¶ Return keyframe.
-
offset
¶
-
pages
= None¶
-
parent
¶
-
-
class
tifffile.
TiffTag
(parent, tagheader, tagoffset)¶ Bases:
object
TIFF tag structure.
-
name
¶ Name of tag.
- Type
string
-
value
¶ Tag data as Python object.
- Type
various types
-
All attributes are read-only.
-
code
-
count
-
dtype
-
name
Return name of tag from TIFF.TAGS registry.
-
value
-
valueoffset
¶
-
-
class
tifffile.
FileHandle
(file, mode='rb', name=None, offset=None, size=None)¶ Bases:
object
Binary file handle.
A limited, special purpose file handle that can:
handle embedded files (for CZI within CZI files)
re-open closed files (for multi-file formats, such as OME-TIFF)
read and write numpy arrays and records from file like objects
Only ‘rb’ and ‘wb’ modes are supported. Concurrently reading and writing of the same stream is untested.
When initialized from another file handle, do not use it unless this FileHandle is closed.
-
All attributes are read-only.
-
close
()¶ Close file.
-
closed
¶
-
dirname
¶
-
flush
()¶ Flush write buffers if applicable.
-
is_file
-
lock
¶
-
memmap_array
(dtype, shape, offset=0, mode='r', order='C')¶ Return numpy.memmap of data stored in file.
-
name
-
open
()¶ Open or re-open file.
-
path
-
read
(size=-1)¶ Read ‘size’ bytes from file, or until EOF is reached.
-
read_array
(dtype, count=-1, out=None)¶ Return numpy array from file in native byte order.
-
read_record
(dtype, shape=1, byteorder=None)¶ Return numpy record from file.
-
read_segments
(offsets, bytecounts, lock=None, buffersize=None)¶ Return iterator over segments read from file.
A reentrant lock can be used to synchronize seeks and reads up to buffersize bytes.
-
readinto
(b)¶ Read up to len(b) bytes into b, and return number of bytes read.
-
seek
(offset, whence=0)¶ Set file’s current position.
-
size
-
tell
()¶ Return file’s current position.
-
write
(bytestring)¶ Write bytestring to file.
-
write_array
(data)¶ Write numpy array to binary file.
-
write_empty
(size)¶ Append size bytes to file. Position must be at end of file.
-
class
tifffile.
FileSequence
(fromfile, files, container=None, sort=None, pattern=None)¶ Bases:
object
Series of files containing array data of compatible shape and data type.
-
asarray
(file=None, ioworkers=1, out=None, **kwargs)¶ Read image data from files and return as numpy array.
Raise IndexError or ValueError if array shapes do not match.
- Parameters
ioworkers (int or None) – Maximum number of threads to execute the array read function asynchronously. Default: 1. If None, default to the number of processors multiplied by 5. Using threads can significantly improve runtime when reading many small files from a network share.
out (numpy.ndarray, str, or file-like object) – Buffer where image data will be saved. If None (default), a new array will be created. If numpy.ndarray, a writable array of compatible dtype and shape. If ‘memmap’, create a memory-mapped array in a temporary file. If str or open file, the file name or file object used to create a memory-map to an array stored in a binary file on disk.
kwargs (dict) – Additional parameters passed to the array read function.
-
close
()¶
-
-
class
tifffile.
Timer
(message='', end=' ')¶ Bases:
object
Stopwatch for timing execution speed.
-
clock
()¶ perf_counter() -> float
Performance counter for benchmarking.
-
duration
¶
-
print
(message='', end=None)¶ Print duration from timer start till last stop or now.
-
start
(message='', end=' ')¶ Start timer and return current time.
-
started
¶
-
stop
(message='', end=' ')¶ Return duration of timer till start.
-
stopped
¶
-
-
class
tifffile.
lazyattr
(func)¶ Bases:
object
Attribute whose value is computed on first access.
-
func
¶
-
-
tifffile.
natural_sorted
(iterable)¶ Return human sorted list of strings.
E.g. for sorting file names.
>>> natural_sorted(['f1', 'f2', 'f10']) ['f1', 'f2', 'f10']
-
tifffile.
stripnull
(string, null=b'\x00')¶ Return string truncated at first null character.
Clean NULL terminated C strings. For unicode strings use null=‘0’.
>>> stripnull(b'string\x00') b'string' >>> stripnull('string\x00', null='\0') 'string'
-
tifffile.
transpose_axes
(image, axes, asaxes=None)¶ Return image with its axes permuted to match specified axes.
A view is returned if possible.
>>> transpose_axes(numpy.zeros((2, 3, 4, 5)), 'TYXC', asaxes='CTZYX').shape (5, 2, 1, 3, 4)
-
tifffile.
squeeze_axes
(shape, axes, skip=None)¶ Return shape and axes with single-dimensional entries removed.
Remove unused dimensions unless their axes are listed in ‘skip’.
>>> squeeze_axes((5, 1, 2, 1, 1), 'TZYXC') ((5, 2, 1), 'TYX')
-
tifffile.
create_output
(out, shape, dtype, mode='w+', suffix=None)¶ Return numpy array where image data of shape and dtype can be copied.
The ‘out’ parameter may have the following values or types:
- None
An empty array of shape and dtype is created and returned.
- numpy.ndarray
An existing writable array of compatible dtype and shape. A view of the same array is returned after verification.
- ‘memmap’ or ‘memmap:tempdir’
A memory-map to an array stored in a temporary binary file on disk is created and returned.
- str or open file
The file name or file object used to create a memory-map to an array stored in a binary file on disk. The created memory-mapped array is returned.
-
tifffile.
repeat_nd
(a, repeats)¶ Return read-only view into input array with elements repeated.
Zoom nD image by integer factors using nearest neighbor interpolation (box filter).
- Parameters
a (array_like) – Input array.
repeats (sequence of int) – The number of repetitions to apply along each dimension of input array.
Examples
>>> repeat_nd([[1, 2], [3, 4]], (2, 2)) array([[1, 1, 2, 2], [1, 1, 2, 2], [3, 3, 4, 4], [3, 3, 4, 4]])
-
tifffile.
format_size
(size, threshold=1536)¶ Return file size as string from byte size.
>>> format_size(1234) '1234 B' >>> format_size(12345678901) '11.50 GiB'
-
tifffile.
astype
(value, types=None)¶ Return argument as one of types if possible.
>>> astype('42') 42 >>> astype('3.14') 3.14 >>> astype('True') True >>> astype(b'Neee-Wom') 'Neee-Wom'
-
tifffile.
product
(iterable)¶ Return product of sequence of numbers.
Equivalent of functools.reduce(operator.mul, iterable, 1). Multiplying numpy integers might overflow.
>>> product([2**8, 2**30]) 274877906944 >>> product([]) 1
-
tifffile.
xml2dict
(xml, sanitize=True, prefix=None)¶ Return XML as dict.
>>> xml2dict('<?xml version="1.0" ?><root attr="name"><key>1</key></root>') {'root': {'key': 1, 'attr': 'name'}}
-
tifffile.
pformat
(arg, width=79, height=24, compact=True)¶ Return pretty formatted representation of object as string.
Whitespace might be altered.
-
tifffile.
str2bytes
(s, encoding='cp1252')¶ Return bytes from unicode string.
-
tifffile.
nullfunc
(*args, **kwargs)¶ Null function.
>>> nullfunc('arg', kwarg='kwarg')
-
tifffile.
update_kwargs
(kwargs, **keyvalues)¶ Update dict with keys and values if keys do not already exist.
>>> kwargs = {'one': 1, } >>> update_kwargs(kwargs, one=None, two=2) >>> kwargs == {'one': 1, 'two': 2} True
-
tifffile.
parse_kwargs
(kwargs, *keys, **keyvalues)¶ Return dict with keys from keys|keyvals and values from kwargs|keyvals.
Existing keys are deleted from kwargs.
>>> kwargs = {'one': 1, 'two': 2, 'four': 4} >>> kwargs2 = parse_kwargs(kwargs, 'two', 'three', four=None, five=5) >>> kwargs == {'one': 1} True >>> kwargs2 == {'two': 2, 'four': 4, 'five': 5} True
-
tifffile.
askopenfilename
(**kwargs)¶ Return file name(s) from Tkinter’s file open dialog.
-
tifffile.
imsave
(file, data=None, shape=None, dtype=None, **kwargs)¶ Write numpy array to TIFF file.
Refer to the TiffWriter class and its asarray function for documentation.
A BigTIFF file is created if the data size in bytes is larger than 4 GB minus 32 MB (for metadata), and ‘bigtiff’ is not specified, and ‘imagej’ or ‘truncate’ are not enabled.
- Parameters
file (str or binary stream) – File name or writable binary stream, such as an open file or BytesIO.
data (array_like) – Input image. The last dimensions are assumed to be image depth, height, width, and samples. If None, an empty array of the specified shape and dtype is saved to file. Unless ‘byteorder’ is specified in ‘kwargs’, the TIFF file byte order is determined from the data’s dtype or the dtype argument.
shape (tuple) – If ‘data’ is None, shape of an empty array to save to the file.
dtype (numpy.dtype) – If ‘data’ is None, datatype of an empty array to save to the file.
kwargs (dict) – Parameters ‘append’, ‘byteorder’, ‘bigtiff’, and ‘imagej’, are passed to the TiffWriter constructor. Other parameters are passed to the TiffWriter.save function.
- Returns
offset, bytecount – If the image data are written contiguously, return offset and bytecount of image data in the file.
- Return type
-
tifffile.
decode_lzw
(encoded)¶ Decompress LZW encoded byte string.
-
tifffile.
decodelzw
(encoded)¶ Decompress LZW encoded byte string.