pyml.nn package¶
Submodules¶
pyml.nn.activations module¶
-
pyml.nn.activations.
crelu
(x)[source]¶ Computes Concatenated ReLU.
Concatenates a ReLU which selects only the positive part of the activation with a ReLU which selects only the negative part of the activation. Note that as a result this non-linearity doubles the depth of the activations. Source: Understanding and Improving Convolutional Neural Networks via Concatenated Rectified Linear Units. W. Shang, et al.
- Arguments:
- x {lists or array} – inputs
- Returns:
- array – outputs
-
pyml.nn.activations.
elu
(x)[source]¶ Computes exponential linear element-wise. exp(x) - 1` if x < 0, x otherwise
\[\begin{split}y = \left\{ {\begin{array}{*{20}{c}}{x,\;\;\;\;\;\;\;\;\;x \ge 0}\\{{e^x} - 1,\;\;\;x < 0}\end{array}} \right..\end{split}\]See Fast and Accurate Deep Network Learning by Exponential Linear Units (ELUs)
- Arguments:
- x {lists or array} – inputs
- Returns:
- array – outputs
-
pyml.nn.activations.
leaky_relu
(x, alpha=0.2)[source]¶ Compute the Leaky ReLU activation function.
\(y = \left\{ {\begin{array}{*{20}{c}}{x,\;\;\;\;\;\;x \ge 0}\\{\alpha x,\;\;\;x < 0}\end{array}} \right.\)
Rectifier Nonlinearities Improve Neural Network Acoustic Models
- Arguments:
- x {lists or array} – inputs
- Returns:
- array – outputs
-
pyml.nn.activations.
linear
(x)[source]¶ linear activation
\(y = x\)
- Arguments:
- x {lists or array} – inputs
- Returns:
- array – outputs
-
pyml.nn.activations.
relu
(x)[source]¶ Computes rectified linear: max(x, 0).
\({\rm max}(x, 0)\)
- Arguments:
- x {lists or array} – inputs
- Returns:
- array – outputs
-
pyml.nn.activations.
relu6
(x)[source]¶ Computes Rectified Linear 6: min(max(x, 0), 6).
\({\rm min}({\rm max}(x, 0), 6)\)
Convolutional Deep Belief Networks on CIFAR-10. A. Krizhevsky
- Arguments:
- x {lists or array} – inputs
- Returns:
- array – outputs
-
pyml.nn.activations.
selu
(x)[source]¶ Computes scaled exponential linear: scale * alpha * (exp(x) - 1) if < 0, scale * x otherwise.
\[\begin{split}y = \lambda \left\{ {\begin{array}{*{20}{c}}{x,\;\;\;\;\;\;\;\;\;\;\;\;\;x \ge 0}\\{\alpha ({e^x} - 1),\;\;\;\;x < 0}\end{array}} \right.\end{split}\]where, \(\alpha = 1.6732632423543772848170429916717\) , \(\lambda = 1.0507009873554804934193349852946\)
See Self-Normalizing Neural Networks
- Arguments:
- x {lists or array} – inputs
- Returns:
- array – outputs
-
pyml.nn.activations.
sigmoid
(x)[source]¶ sigmoid function
\[y = \frac{e^x}{e^x + 1}\]- Arguments:
- x {lists or array} – inputs
- Returns:
- array – outputs
-
pyml.nn.activations.
softplus
(x)[source]¶ Computes softplus: log(exp(x) + 1).
\({\rm log}(e^x + 1)\)
- Arguments:
- x {lists or array} – inputs
- Returns:
- array – outputs
-
pyml.nn.activations.
softsign
(x)[source]¶ Computes softsign: x / (abs(x) + 1).
\(\frac{x} {({\rm abs}(x) + 1)}\)
- Arguments:
- x {lists or array} – inputs
- Returns:
- array – outputs
-
pyml.nn.activations.
swish
(x, beta=1.0)[source]¶ Computes the Swish activation function: x * sigmoid(beta*x).
\(y = x\cdot {\rm sigmoid}(\beta x) = {e^{(\beta x)} \over {e^{(\beta x)} + 1}} \cdot x\)
See “Searching for Activation Functions” (Ramachandran et al. 2017)
- Arguments:
- x {lists or array} – inputs
- Returns:
- array – outputs